一种变论域模糊PID双液压缸电液伺服同步控制方法技术

技术编号:14684777 阅读:74 留言:0更新日期:2017-02-22 18:25
本发明专利技术属于自动化控制技术领域,涉及一种电液伺服同步驱动系统的变论域模糊PID同步控制方法。该方法包括以下步骤:设计一种可根据输入、输出变量的大小进行自适应调整的论域伸缩因子;针对自由通道与调整通道,选择不同的输入变量,选ΔKP、ΔKI作为输出变量;对输入变量进行模糊化处理;在论域零点处选三角形隶属度函数,在靠近模糊论域边界处选高斯型隶属度函数;制定模糊规则表;用Mamdani法则进行模糊推理;对模糊量进行清晰化处理,输出到被控对象,进行控制。本发明专利技术较传统的变论域模糊PID控制器的动态协调性好,控制精度高,且通用性高。

【技术实现步骤摘要】

本专利技术属于自动化控制
,涉及一种电液伺服同步驱动系统的变论域模糊PID同步控制方法。
技术介绍
随着我国轨道车辆行业突飞猛进的发展,运行速度的提高,使得人们对于乘坐车辆的安全性以及舒适性有了更高的要求,在保证运行安全的前提下,提高车辆的运行品质已经成为了现在车辆设计、制造和线路建设与维护过程中的首要问题。而轮/轨接触关系及车辆/线路之间的相互作用,直接影响着车辆的运行品质,为了研究轮/轨接触关系及车辆/线路之间的相互作用,测力轮对作为轨道车辆动力学试验研究中的核心传感器,其性能的优劣,直接影响被试车辆动力学试验的结果,从而影响车辆运行品质的评估。而在轨道车辆动力学试验测试中,测力轮对标定结果的准确性直接影响着整个动力学试验的测试结果,是试验前的一个重要环节。对测力轮对进行标定,其原理就是通过对测力轮对施加载荷,通过粘贴在轮对辐条上的应变片输出的信号,计算得出测力轮对所受载荷与轮缘的形变量之间的关系,进行将测力轮对应用于线路试验中,测得车辆在行驶过程中所受轮轨力的数值。为了防止在标定过程中,由于双通道垂向液压缸运动不同步,使轮对所受垂向负载差别较大,使测力轮对形成一个“杠杆”现象,导致活塞和活塞杆出现卡死现象,甚至会损坏设备,给轮对标定工作带来安全隐患,所以加载过程中,双液压缸运动的同步性是一个特别予以重视的问题。并且传统的模糊PID由于规则数量的限制,不能根据模糊控制器输入量的大小来自适应调整比例因子与量化因子,来改变零点附近的规则数量,难以实现对系统进行高精度的控制,并且针对自身存在非线性、时变性、时滞等特点的系统,难以实现高质量的控制效果。
技术实现思路
本专利技术的目的是:提供一种电液伺服同步驱动系统中,对双通道垂向液压缸进行同步控制的变论域模糊PID控制方法,以解决双通道液压缸同步控制的问题,克服模糊控制器的比例因子和量化因子不能自适应调整的缺点。为实现上述目的,一种变论域模糊PID同步控制方法的设计包括以下步骤:步骤1.设计一种可根据输入、输出变量的大小进行自适应调整的论域伸缩因子,用以提高控制器的控制精度;步骤2.自由通道中选择误差e1和误差的变化率ec1作为模糊控制器的输入变量,调整通道中选择同步误差se和调整通道误差e2作为模糊控制器的输入变量,选择△KP、△KI作为模糊控制器的输出变量;步骤3.对输入变量进行模糊化处理,将均为精确值的输入变量转换成模糊变量,并分别由它们各自的模糊子集表示出来,进而输入到模糊控制器进行模糊推理;步骤4.确定隶属度函数,为了提高精度,在零点处的隶属度函数要求分辨率高,故选择三角形隶属度函数,而在靠近模糊论域边界处,为了提高系统的稳定性,选择高斯型隶属度函数;步骤5.制定模糊规则表,自由通道的模糊规则表,考虑如下原则进行制定:(1).误差|e1|较大时,选用较大的KP值,使自由通道响应速度增快;令KI值取零,防止出现的过超调,去掉积分作用;(2).误差|e1|和误差变化率|ec1|中等大时,选用较小的KP,减小系统超调;使用适中的KI值;(3).误差|e1|较小时,适当增大KP和KI的值;(4).误差变化变化量|ec1|的值,体现了系统误差变化的速率。因此当|ec1|值大时,适当减小KP值,加大KI值;调整通道的模糊规则表,考虑如下原则进行制定:(1).同步偏差|se|较大时,选用较大的KP值,使跟踪通道响应速度增快,缩小与自由通道的同步误差,选用较小KI值;(2).同步误差|se|和误差|e2|中等大时,选用适中的KP值,防止调整通道超调,并选用较小的KI值;(3).同步误差|se|和误差|e2|较小时,选用较大的KI值,提高调整通道的稳定性;步骤6.输入到模糊控制器的模糊变量通过模糊规则表进行模糊推理,得出模糊输出变量,其中模糊推理采用Mamdani推理法则;步骤7.模糊变量清晰化,将通过模糊推理得出的模糊输出变量进行清晰化操作,使模糊值转换成清晰值,修改PID参数值,输出到被控对象,进行控制。本专利技术的优点在于,模糊控制器的伸缩因子可以根据模糊输入量的大小进行自适应调整,实现在误差趋近于零点时,增加模糊规则的数量,进而提高系统的控制精度。附图说明图1是本专利技术方法的控制原理图;图2是基于Simulink的双液压缸变论域模糊PID同步控制模型图;图3是自由通道所采用的隶属度函数图;图4是调整通道所采用的隶属度函数图;图5是基于Simulink同步控制模型的控制仿真效果图;图6是实际双液压缸输出效果图。具体实施方式下面结合附图对本专利技术进行进一步的说明。图1是变论域模糊PID控制原理图,图中包括输入信号rin,论域调整模块,模糊控制器模块,PID参数调整模块,执行机构(液压缸),传感器(位移、力),系统输出量yout;输入信号经过PID参数调整模块,作用于执行机构上,得到的系统输出量经过传感器,转换为与输入信号形式相同的量,并与输入信号进行比较,将误差信号作为输入变量,输入到论域调整模块,经模糊控制器模块,作用到PID参数调整模块上,实现对PID参数的在线调整以及系统的闭环控制。图2是基于Simulink的双液压缸变论域模糊PID同步控制模型图,采用一种基于等同控制与偏差耦合控制相结合的控制方法,即一方面,两液压缸接受同一输入信号,两缸输出与输入信号进行比较,通过偏差对两缸进行控制,实现同等控制;另一方面,调整通道根据与自由通道的输出之间的差值,进行控制,也就是说调整通道不仅仅根据输出的误差进行调整,还根据与自由通道的输出误差进行调整,实现了两级模糊PID同步控制。对于模型中,变论域模糊PID控制器的设计,包括以下步骤:步骤1.由于常用的论域伸缩因子带有常值参数,对于不同的被控对象,就需要重新设定不同的参数值,不能根据输入变量进行自适应调整,难以寻求最优参数值。且伸缩因子的取值仅仅与输入变量有关,伸缩因子的动态协调性差;考虑到伸缩因子还满足对偶性、保零性、单调性、正规性等条件,基于以上考虑,设计输入伸缩因子,可描述为:伸缩原理为,当输入变量|x|和|y|都较大时,伸缩因子的底数较大,且指数较大,使伸缩因子取较大值,对论域进行放大,提高系统的响应速度,当输入变量|x|和|y|都较小时,伸缩因子的底数较小,且指数较小,使整个伸缩因子取较小值,对论域进行收缩,以提高系统的稳定性,进行更精确的控制。对于输出伸缩因子,考虑KP、KI对控制性能的影响,输出变量△KP的伸缩因子应具有与误差的单调一致性,输出变量△KI的伸缩因子则具有与误差的单调反向性,伸缩因子可描述为:其中,步骤2.设置自由通道的输入变量误差e1的基本论域为[-12,12],对应的模糊量变化范围为[-3,3],输入变量误差的变化率ec1的基本论域为[-10,10],对应的模糊量变化范围为[-3,3],取比例因子Ke1=3/12=0.25,Kec1=3/10=0.3,输入输出变量均定义为7个模糊子集,即P={NB,NM,NS,Z,PS,PM,PB本文档来自技高网
...
一种<a href="http://www.xjishu.com/zhuanli/54/201610325667.html" title="一种变论域模糊PID双液压缸电液伺服同步控制方法原文来自X技术">变论域模糊PID双液压缸电液伺服同步控制方法</a>

【技术保护点】
一种变论域模糊PID双液压缸电液伺服同步控制方法,其特征在于,所述的变论域模糊PID双液压缸电液伺服同步控制方法包含以下步骤:输入、输出论域伸缩因子的设计;模糊输入、输出量的确定及输入变量的模糊化处理;隶属度函数的确定;建立模糊控制规则表及模糊推理;模糊输出量的清晰化处理及PID参数的在线更新。

【技术特征摘要】
1.一种变论域模糊PID双液压缸电液伺服同步控制方法,其特征在于,所述的变论域模糊PID双液压缸电液伺服同步控制方法包含以下步骤:输入、输出论域伸缩因子的设计;模糊输入、输出量的确定及输入变量的模糊化处理;隶属度函数的确定;建立模糊控制规则表及模糊推理;模糊输出量的清晰化处理及PID参数的在线更新。2.如权利要求1所述的变论域模糊PID双液压缸电液伺服同步控制方法,其特征在于,所述的输入、输出论域伸缩因子的设计方法为:将输入、输出论域伸缩因子设计为能根据输入变量自适应的形式,对于输入论域伸缩因子可描述为:对于输出论域伸缩因子可描述为:其中,3.如权利要求1所述的变论域模糊PID双液压缸电液伺服同...

【专利技术属性】
技术研发人员:张邦成周东华李永生高嵩庞会文林健乔王子建徐燃
申请(专利权)人:长春工业大学中车长春轨道客车股份有限公司
类型:发明
国别省市:吉林;22

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1