多能互补能源集成系统技术方案

技术编号:14500793 阅读:80 留言:0更新日期:2017-01-30 10:41
本实用新型专利技术公开一种多能互补能源集成系统,包括终端集成管理控制器,终端集成管理控制器的能源输入端组连接有时段性能源供应装置;终端集成管理控制器的热能回收端与热油储能模块的输出端连接,终端集成管理控制器的气能存储端与高压气蓄能模块的输入端连接,高压气蓄能模块的输出端连接终端集成管理控制器的气能回收端,终端集成管理控制器向外输出电能或热能或冷能。采用本方案,用户可选择适宜的方式组网,将地热、燃气发电机、光伏发电机和市电电网中多余能量“储存”在高压气和高温热油中,多能互补,并能适时将能量输出;在采用高压气蓄能时,通过引入射流泵可以实现中低压气体的循环回收利用,且可以重复循环利用,效率更高。

【技术实现步骤摘要】

本技术涉及一种能量储能、释放系统,具体涉及一种多能互补能源集成系统
技术介绍
能源问题是当今世界面临的突出问题,风、光、水、电、气所蕴含的能量均以被人们有效利用,广泛用于加热、制冷、发电等领域。然而当今世界电力负荷的不均衡日趋突出,电网的峰谷差也逐渐拉大,同时人们对电网供电质量的要求也越来越高,因此迫切需要经济、稳定、可靠、高效的电力储能系统与之相配套,以缓解系统负荷峰谷差过大的情况。电力储能系统也是提高风电、太阳能发电等可再生能源利用率的有效手段。此外,电力储能系统还是解决分布式能源系统容量小、负荷波动大等问题的关键技术。
技术实现思路
为解决以上技术问题,本技术提供一种多能互补能源集成系统。技术方案如下:一种多能互补能源集成系统,其关键在于:包括终端集成管理控制器、热油储能模块和高压气蓄能模块,其中终端集成管理控制器的能源输入端组连接有至少二种时段性能源供应装置;终端集成管理控制器的热能回收端与热油储能模块的输出端连接;终端集成管理控制器的气能存储端与高压气蓄能模块的输入端连接,高压气蓄能模块的输出端连接终端集成管理控制器的气能回收端;终端集成管理控制器的电能输出端向外输出电能,终端集成管理控制器的热能输出端向外输出热能和冷能,冷能是以冷水或冷空气的形式向外供冷。以上技术方案提供了高压气蓄能和热油储能两种储能模式,用户可选择适宜的方式组网,将各种剩余能源“储存”在高压气和高温热油中,多能互补,并能适时将能量输出。上述时段性能源供应装置分为:地热供应装置、燃气发电机、光伏发电机和市电电网,其中地热供应装置连接所述终端集成管理控制器的地热输入端;所述燃气发电机、光伏发电机和市电电网分别输送电能给所述终端集成管理控制器。上述终端集成管理控制器包括溴化锂空调主机、热泵热水空调主机、地热热泵空调系统、高温热能管理系统和电源智能切换管理器;所述溴化锂空调主机和热泵热水空调主机的输入端分别通过同一个所述高温热能管理系统与所述热油储能模块的输出端连接;所述地热热泵空调系统的输入端接所述地热供应装置;所述溴化锂空调主机、热泵热水空调主机和地热热泵空调系统连接在同一个空调冷热输配管理模块上;所述电源智能切换管理器的输入端组分别与所述燃气发电机的输出端、光伏发电机的输出端和市电电网的输出端电路连接,所述电源智能切换管理器的输出端连接有微电网分配管理器和空压机,所述微电网分配管理器的输出端向外输出电能,该微电网分配管理器还为所述溴化锂空调主机、热泵热水空调主机、地热热泵空调系统供电;所述空压机的输出端与所述高压气蓄能模块气路连接,该高压气蓄能模块的电力输出端与所述电源智能切换管理器的输入端电路连接。上述燃气发电机的高温余热通过管路引入所述高温热能管理系统,所述燃气发电机和电源智能切换管理器之间电路连接有变压器;所述光伏发电机和电源智能切换管理器之间电路连接有光伏发电逆变器。上述高压气蓄能模块包括n个高压罐、n-1个射流泵、n个气轮发电机、空气净化装置、增压泵及余压罐;所述空压机上有n个输出端且与n个所述高压罐的输入端分别通过气路一一对应连接;其中第一个所述高压罐的高压输出气路上安装有第一气轮发电机,所述第一气轮发电机的下游气路连接所述空气净化装置;所述空气净化装置包括净化腔体、及安装在该净化腔体内的叶轮风机和过滤装置,所述第一气轮发电机的下游气路伸入净化腔体后,吹动所述叶轮风机,所述净化腔体外壁上设有吸气孔和排气孔;其余n-1个所述高压罐高压输出端分别与n-1个所述射流泵的第一输入端通过气路一一对应连接,n-1个所述射流泵的高压输出气路上分别安装有一个气轮发电机,n-1个所述气轮发电机的下游气路汇聚到所述增压泵输入端上,所述增压泵输出端与所述余压罐输入端通过气路连接,所述余压罐输出端分别与n-1个所述射流泵的第二输入端通过气路一一对应连接;所述第一高压罐低压输出端与第一射流泵第二输入端通过气路连接,依次地,第n-1高压罐低压输出端与第n-1射流泵第二输入端通过气路连接;n个所述气轮发电机的电力输出端汇集后与所述电源智能切换管理器的输入端电路连接。采用以上技术方案,高压罐内中低压气体通过射流泵可以被利于来驱动气轮发电机发电,同时气轮发电机未被利用的中低压气体通过增压泵收集到余压罐内,余压罐又与射流泵连接,实现了中低压气体的循环回收利用,且可以重复循环利用,所以在整个电能回收利用系统中,其中低压气体中能量基本都被回收再利用而没有浪费,故电能的回收再利用率高,而且第一气轮发电机未被利用的中低压气体通并用于驱动空气净化装置,能量也被充分利用,用于净化污染气体,达到净化环境的目的,也利于空气压缩机正常使用。每一个所述气轮发电机输入端气路上均安装有一个流量调节器,每一个所述流量调节器用于调节相对应气轮发电机输入端气路上的气体流量。所述增压泵与所述余压罐之间的气路上设置有单向阀。每一个所述高压罐的输入端气路上均设置有一个控制开关。所述过滤装置设置在所述叶轮风机的上方,所述吸气孔位于所述叶轮风机的下方,所述排气孔位于所述过滤装置的上方。上述热油储能模块为太阳能光热供能。有益效果:本技术多能互补能源集成系统提供了高压气蓄能和热油储能两种储能模式,用户可选择适宜的方式组网,将地热、燃气发电机、光伏发电机和市电电网中多余能量“储存”在高压气和高温热油中,多能互补,并能适时将能量输出;在采用高压气蓄能时,通过引入射流泵可以实现中低压气体的循环回收利用,且可以重复循环利用,效率更高。附图说明图1为本技术的结构示意图;图2为高压气蓄能模块m的原理框图;图3为空气净化装置6的结构示意图。具体实施方式下面结合实施例和附图对本技术作进一步说明。如图1所示,一种多能互补能源集成系统,包括终端集成管理控制器11、热油储能模块a和高压气蓄能模块m,其中终端集成管理控制器11的能源输入端组连接有至少二种时段性能源供应装置1;终端集成管理控制器11的热能回收端与热油储能模块a的输出端连接;终端集成管理控制器11的气能存储端与高压气蓄能模块m的输入端连接,高压气蓄能模块m的输出端连接终端集成管理控制器11的气能回收端;终端集成管理控制器11的电能输出端向外输出电能,终端集成管理控制器11的热能输出端向外输出热能和冷能。所述时段性能源供应装置1分为:地热供应装置101、燃气发电机102、光伏发电机103和市电电网104,其中地热供应装置101连接所述终端集成管理控制器11的地热输入端;燃气发电机102由沼气或天然气燃烧发电,光伏发电机103由光照驱动发电,市电电网104应选择在用电低谷时供电;所述燃气发电机102、光伏发电机103和市电电网104分别输送电能给所述终端集成管理控制器11。所述终端集成管理控制器11包括溴化锂空调主机b、热泵热水空调主机c、地热热泵空调系统d、高温热能管理系统p和电源智能切换管理器k;所述溴化锂空调主机b和热泵热水空调主机c的输入端分别通过同一个所述高温热能管理系统p与所述热油储能模块a的输出端连接;所述地热热泵空调系统d的输入端接所述地热供应装置101;所述溴化锂空调主机b、热泵热水空调主机c和地热热泵空调系统d连接在同一个空调冷热输配管理模块j上;所述电源智能切换管理器k的输入端组分别与所述燃气发本文档来自技高网...
多能互补能源集成系统

【技术保护点】
一种多能互补能源集成系统,其特征在于:包括终端集成管理控制器(11)、热油储能模块(a)和高压气蓄能模块(m),其中终端集成管理控制器(11)的能源输入端组连接有至少二种时段性能源供应装置(1);终端集成管理控制器(11)的热能回收端与热油储能模块(a)的输出端连接;终端集成管理控制器(11)的气能存储端与高压气蓄能模块(m)的输入端连接,高压气蓄能模块(m)的输出端连接终端集成管理控制器(11)的气能回收端;终端集成管理控制器(11)的电能输出端向外输出电能,终端集成管理控制器(11)的热能输出端向外输出热能和冷能。

【技术特征摘要】
1.一种多能互补能源集成系统,其特征在于:包括终端集成管理控制器(11)、热油储能模块(a)和高压气蓄能模块(m),其中终端集成管理控制器(11)的能源输入端组连接有至少二种时段性能源供应装置(1);终端集成管理控制器(11)的热能回收端与热油储能模块(a)的输出端连接;终端集成管理控制器(11)的气能存储端与高压气蓄能模块(m)的输入端连接,高压气蓄能模块(m)的输出端连接终端集成管理控制器(11)的气能回收端;终端集成管理控制器(11)的电能输出端向外输出电能,终端集成管理控制器(11)的热能输出端向外输出热能和冷能。2.根据权利要求1所述的多能互补能源集成系统,其特征在于:所述时段性能源供应装置(1)分为:地热供应装置(101)、燃气发电机(102)、光伏发电机(103)和市电电网(104),其中地热供应装置(101)连接所述终端集成管理控制器(11)的地热输入端;所述燃气发电机(102)、光伏发电机(103)和市电电网(104)分别输送电能给所述终端集成管理控制器(11)。3.根据权利要求2所述的多能互补能源集成系统,其特征在于:所述终端集成管理控制器(11)包括溴化锂空调主机(b)、热泵热水空调主机(c)、地热热泵空调系统(d)、高温热能管理系统(p)和电源智能切换管理器(k);所述溴化锂空调主机(b)和热泵热水空调主机(c)的输入端分别通过同一个所述高温热能管理系统(p)与所述热油储能模块(a)的输出端连接;所述地热热泵空调系统(d)的输入端接所述地热供应装置(101);所述溴化锂空调主机(b)、热泵热水空调主机(c)和地热热泵空调系统(d)连接在同一个空调冷热输配管理模块(j)上;所述电源智能切换管理器(k)的输入端组分别与所述燃气发电机(102)的输出端、光伏发电机(103)的输出端和市电电网(104)的输出端电路连接,所述电源智能切换管理器(k)的输出端连接有微电网分配管理器(r)和空压机(s),所述微电网分配管理器(r)的输出端向外输出电能,该微电网分配管理器(r)还为所述溴化锂空调主机(b)、热泵热水空调主机(c)、地热热泵空调系统(d)供电;所述空压机(s)的输出端与所述高压气蓄能模块(m)气路连接,该高压气蓄能模块(m)的电力输出端与所述电源智能切换管理器(k)的输入端电路连接。4.根据权利要求3所述的多能互补能源集成系统,其特征在于:所述燃气发电机(102)的高温余热通过管路引入所述高温热能管理系统(p),所述燃气发电机(102)和电源智能切换管理器(k)之间电路连接有变压器(t);所述光伏发电机(103)和电源智能切换管理器(k)之间电路连接有光伏发电逆变器(n)。5.根据权利要求3或4所述的多能互补能源集成系统,其特征在于:所述高压气蓄能模块(m)包括n个高压罐(...

【专利技术属性】
技术研发人员:刘琪李均
申请(专利权)人:重庆京天能源投资集团股份有限公司
类型:新型
国别省市:重庆;50

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1