一种高压陶瓷电容器瓷介质芯片厚度检测装置制造方法及图纸

技术编号:14432695 阅读:139 留言:0更新日期:2017-01-14 09:32
本实用新型专利技术公开了一种高压陶瓷电容器瓷介质芯片厚度检测装置,包括自动传输线、电磁铁、升降杆、圆形轨道、数显百分表、伸缩挡杆和计算机;自动传输线上设置有厚度尺寸检测工位,位于厚度尺寸检测工位正下方的自动传输线底部固定设置有电磁铁,厚度尺寸检测工位的正上方设置有圆形轨道;位于厚度尺寸检测工位上游的自动传输线上设有伸缩挡杆;圆形轨道的直径小于瓷介质芯片的直径,圆形轨道的底部滑动连接数显百分表;圆形轨道通过升降杆固定设置在自动传输线的一侧,升降杆上设置有位移传感器;上述电磁铁、升降杆、数显百分表和伸缩挡杆均与计算机相连接。采用上述结构后,能在线实时检测压制产品的厚度尺寸,检测效率高,检测数据可靠。

【技术实现步骤摘要】

本技术涉及陶瓷电容器生产领域用检验装置,特别是一种高压陶瓷电容器瓷介质芯片厚度检测装置
技术介绍
传统的分立元件—陶瓷电容器以圆片形为主,这种结构成型简单、工艺成熟、操作简便,便于批量化、规模化生产。但陶瓷电容器中的瓷介质芯片,在成型压制阶段,厚度尺寸为非模具保证尺寸,也即为压制管控尺寸,由于粉料填充重量,粉料松装密度,粉料颗粒度、粉料流动性,压机自身状态等多方面的原因,压制后的瓷介质芯片厚度尺寸差异很大,需要不断检测,及时发现尺寸不良品,并及时调整。因此,对瓷介质芯片厚度尺寸的检测与管控显得非常重要。目前,瓷介质芯片的厚度尺寸检测主要靠操作员工自检及检查人员巡视,检测频率间隔长,检验时间不固定,且均为事后检验,不能及时发现不良,等检测发现不良现象时,已经有批量压制不良产品,产品报废率高。
技术实现思路
本技术要解决的技术问题是针对上述现有技术的不足,而提供一种高压陶瓷电容器瓷介质芯片厚度检测装置,该高压陶瓷电容器瓷介质芯片厚度检测装置能在线实时检测压制产品的厚度尺寸,检测效率高,检测数据可靠。为解决上述技术问题,本技术采用的技术方案是:一种高压陶瓷电容器瓷介质芯片厚度检测装置,包括自动传输线、电磁铁、升降杆、圆形轨道、数显百分表、伸缩挡杆和计算机。自动传输线上设置有厚度尺寸检测工位,位于厚度尺寸检测工位正下方的自动传输线底部固定设置有电磁铁,厚度尺寸检测工位的正上方设置有圆形轨道,该圆形轨道与电磁铁同轴设置;位于厚度尺寸检测工位上游的自动传输线上设置有伸缩挡杆。圆形轨道的直径小于瓷介质芯片的直径,圆形轨道的底部滑动连接有所述数显百分表。圆形轨道通过升降杆固定设置在自动传输线的一侧,升降杆上设置有位移传感器。上述电磁铁、升降杆、数显百分表和伸缩挡杆均与计算机相连接。所述圆形轨道直径为瓷介质芯片直径的三分之二。所述圆形轨道直径为瓷介质芯片直径的二分之一。所述电磁铁的面积大于瓷介质芯片的面积。所述电磁铁为圆形,电磁铁的直径大于瓷介质芯片的直径,但小于1.5倍瓷介质芯片直径。本技术采用上述结构后,当瓷介质芯片传输至厚度尺寸检测工位时,厚度尺寸检测工位上的电磁铁通电,从而使待检测的瓷介质芯片固定在厚度尺寸检测工位。位于厚度尺寸检测工位上游的伸缩挡杆以及位于厚度尺寸检测工位下游的定位杆均闭合,定位杆对瓷介质芯片的位置进行定位,使瓷介质芯片与圆形轨道相对应。伸缩挡杆对后续的磁介质芯片进行阻挡。然后,升降杆下降,位移传感器对升降杆的升降位移进行实时监测,当达到设定位移时,升降杆停止下降,数显百分表在圆形轨道上滑动一圈,完成对磁介质芯片整个圆周厚度尺寸的测量,并将测试数据传递给计算机,计算机根据设定值进行分析判定。整个测量过程,全部自动完成,自动化程度高,能在线实时检测压制产品的厚度尺寸,检测效率高,检测数据可靠。附图说明图1是本技术一种高压陶瓷电容器瓷介质芯片厚度检测装置的结构示意图。具体实施方式下面结合附图和具体较佳实施方式对本技术作进一步详细的说明。如图1所示,一种高压陶瓷电容器瓷介质芯片厚度检测装置,其中有自动传输线1、厚度尺寸检测工位11、电磁铁111、升降杆2、位移传感器21、圆形轨道3、数显百分表4、计算机5、伸缩挡杆6、瓷介质芯片7和定位杆8等主要技术特征。一种高压陶瓷电容器瓷介质芯片厚度检测装置,包括自动传输线、电磁铁、升降杆、圆形轨道、数显百分表、伸缩挡杆和计算机。自动传输线上设置有厚度尺寸检测工位,位于厚度尺寸检测工位正下方的自动传输线底部固定设置有电磁铁,厚度尺寸检测工位的正上方设置有圆形轨道,该圆形轨道与电磁铁同轴设置;位于厚度尺寸检测工位上游的自动传输线上设置有伸缩挡杆。圆形轨道的直径小于瓷介质芯片的直径,圆形轨道的底部滑动连接有所述数显百分表。圆形轨道通过升降杆固定设置在自动传输线的一侧,升降杆上设置有位移传感器。上述电磁铁、升降杆、数显百分表和伸缩挡杆均与计算机相连接。所述圆形轨道直径为瓷介质芯片直径的三分之二。所述圆形轨道直径为瓷介质芯片直径的二分之一。所述电磁铁的面积大于瓷介质芯片的面积。所述电磁铁为圆形,电磁铁的直径大于瓷介质芯片的直径,但小于1.5倍瓷介质芯片直径。本技术采用上述结构后,当瓷介质芯片传输至厚度尺寸检测工位时,厚度尺寸检测工位上的电磁铁通电,从而使待检测的瓷介质芯片固定在厚度尺寸检测工位。位于厚度尺寸检测工位上游的伸缩挡杆以及位于厚度尺寸检测工位下游的定位杆均闭合,定位杆对瓷介质芯片的位置进行定位,使瓷介质芯片与圆形轨道相对应。伸缩挡杆对后续的磁介质芯片进行阻挡。然后,升降杆下降,位移传感器对升降杆的升降位移进行实时监测,当达到设定位移时,升降杆停止下降,数显百分表在圆形轨道上滑动一圈,完成对磁介质芯片整个圆周厚度尺寸的测量,并将测试数据传递给计算机,计算机根据设定值进行分析判定。整个测量过程,全部自动完成,自动化程度高,能在线实时检测压制产品的厚度尺寸,检测效率高,检测数据可靠。以上详细描述了本技术的优选实施方式,但是,本技术并不限于上述实施方式中的具体细节,在本技术的技术构思范围内,可以对本技术的技术方案进行多种等同变换,这些等同变换均属于本技术的保护范围。本文档来自技高网...
一种高压陶瓷电容器瓷介质芯片厚度检测装置

【技术保护点】
一种高压陶瓷电容器瓷介质芯片厚度检测装置,其特征在于:包括自动传输线、电磁铁、升降杆、圆形轨道、数显百分表、伸缩挡杆和计算机;自动传输线上设置有厚度尺寸检测工位,位于厚度尺寸检测工位正下方的自动传输线底部固定设置有电磁铁,厚度尺寸检测工位的正上方设置有圆形轨道,该圆形轨道与电磁铁同轴设置;位于厚度尺寸检测工位上游的自动传输线上设置有伸缩挡杆;圆形轨道的直径小于瓷介质芯片的直径,圆形轨道的底部滑动连接有所述数显百分表;圆形轨道通过升降杆固定设置在自动传输线的一侧,升降杆上设置有位移传感器;上述电磁铁、升降杆、数显百分表和伸缩挡杆均与计算机相连接。

【技术特征摘要】
1.一种高压陶瓷电容器瓷介质芯片厚度检测装置,其特征在于:包括自动传输线、电磁铁、升降杆、圆形轨道、数显百分表、伸缩挡杆和计算机;自动传输线上设置有厚度尺寸检测工位,位于厚度尺寸检测工位正下方的自动传输线底部固定设置有电磁铁,厚度尺寸检测工位的正上方设置有圆形轨道,该圆形轨道与电磁铁同轴设置;位于厚度尺寸检测工位上游的自动传输线上设置有伸缩挡杆;圆形轨道的直径小于瓷介质芯片的直径,圆形轨道的底部滑动连接有所述数显百分表;圆形轨道通过升降杆固定设置在自动传输线的一侧,升降杆上设置有位移传感器;上述电磁铁、升降杆、数显百分表和...

【专利技术属性】
技术研发人员:钱云春
申请(专利权)人:苏州宏泉高压电容器有限公司
类型:新型
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1