一种基于概率约束的鲁棒Capon波束形成方法技术

技术编号:14342129 阅读:41 留言:0更新日期:2017-01-04 14:00
本发明专利技术属于阵列信号处理领域,主要涉及基于标准Capon自适应波束形成算法对期望信号导向矢量随机误差的稳健性。本发明专利技术提供一种基于概率约束的鲁棒Capon波束形成算法(Robust Probability‑Constrained Robust Capon Beamforming algorithm,PC‑RCB),在RCB算法的基础上,引入预设的中断概率p2来表示随机误差满足时的概率,采用一种统计方式来代替确定方式,建立基于概率约束的导向矢量误差模型分析导向矢量误差δ1的范数平方的概率分布,由给定的中断概率p2计算得到等效的、更加精确的误差范数约束值ε3,构建基于该等效约束值ε3的RCB优化问题进一步提高了对期望信号导向矢量随机误差的鲁棒性。

【技术实现步骤摘要】

本专利技术属于阵列信号处理领域,主要涉及基于标准Capon自适应波束形成算法对期望信号导向矢量随机误差的稳健性。
技术介绍
标准Capon自适应波束形成算法可以在保证对期望信号无失真输出的条件下,使阵列输出功率最小,最大限度的提高波束输出信干噪比(Signal-to-Interference-plus-NoiseRatio,SINR)、最大程度的提高阵列增益,具有较好的方位分辨力和较强的干扰抑制能力。然而,标准Capon波束形成是建立在对期望信号导向矢量和干扰噪声协方差矩阵均精确已知的假设基础之上,对期望信号导向矢量和干扰噪声协方差矩阵的误差比较敏感。而在实际应用中,期望信号导向矢量与干扰噪声协方差矩阵往往都存在一定的估计误差,这样就造成标准Capon波束形成的性能下降严重,尤其是期望信号输入信噪比较高的情况。期望信号导向矢量在实际应用中往往是需要根据一定的算法进行估计得到的,难免会存在一定的估计误差,从而降低波束形成方法的性能。对此,Gershman等人于2003年提出了基于Capon的最差性能最佳化(Worst-CasePerformanceOptimization,WCPO)波束形成方法,其核心思想是假设期望信号的真实导向矢量a(θ1)与预设的导向矢量之间存在估计误差且误差范数有上限||δ||2≤ε1(WCPO算法对误差范数进行约束),即假设真实导向矢量a(θ1)属于不确定集其设计准则是使最差情况下的波束输出SINR最高,即为阵列接收数据的样本协方差矩阵。LiJian等人也于2003年从协方差矩阵拟和的角度提出了一种鲁棒Capon波束形成(RobustCaponBeamforming,RCB)算法,其核心思想是同样假设期望信号的真实导向矢量a(θ1)与预设的导向矢量之间存在估计误差且误差范数有上限算法对误差范数的平方进行约束),即假设真实导向矢量a(θ1)属于不确定集其设计原则是对给定的样本协方差矩阵和预估的导向矢量求解最大可能的期望信号项使得除去期望信号项后的剩余协方差矩阵非负定,即RCB的优化问题可表述为经过一定的转换可以变为最后LiJian等人经过验证发现,当两种波束形成算法的参数满足之时,RCB和WCPO所设的阵列加权是相同的。然而,WCPO虽然可以在一定程度上提高阵列输出SINR,但是也存在其固有的不足之处。一般情况下,在实际应用中,最差情况(即||δ||2=ε1)往往是很难出现的,也就是说期望信号导向矢量误差一般会小于ε1;同时,WCPO算法的性能会随着误差范数约束值ε1的不同而变化,ε1既不能太大也不能太小,只有范数约束值ε1稍大于估计误差δ的范数之时,WCPO算法的性能方能达到比较好的效果。对此,为了进一步提高WCPO波束形成算法的性能,SergiyA.等在2008年提出了基于概率约束的鲁棒最差性能最佳化波束形成算法(PC-WCPO),引入预设的中断概率p1来表示随机误差达到最差情况的概率,采用一种统计方式来代替确定方式,建立基于概率约束的导向矢量误差模型,构建基于概率约束的优化问题从而进一步提高了对期望信号导向矢量随机误差的鲁棒性。然而,该PC-WCPO算法仅仅对由相干散射或非相干散射引起的导向矢量误差具有一定的鲁棒性,而对导向矢量随机误差的鲁棒性很差,其性能甚至会弱于原始的WCPO算法;且当期望信号输入信噪比SNR增大到一定数值之后,其输出SINR将会小于原始WCPO算法的SINR。同时,该算法过于依赖于预设概率值的选择。因此,进一步研究对期望信号导向矢量随机误差具有更好鲁棒性的波束形成算法是非常有必要的。
技术实现思路
本专利技术的目的在于提供一种基于概率约束的鲁棒Capon波束形成方法(RobustProbability-ConstrainedRobustCaponBeamformingalgorithm,PC-RCB),在RCB算法的基础上,引入预设的中断概率p2来表示随机误差满足时的概率,采用一种统计方式来代替确定方式,建立基于概率约束的导向矢量误差模型分析导向矢量误差δ1的范数平方的概率分布,由给定的中断概率p2计算得到等效的、更加精确的误差范数约束值ε3,构建基于该等效约束值ε3的RCB优化问题进一步提高了对期望信号导向矢量随机误差的鲁棒性。本专利技术的思路是:本专利技术在RCB算法的基础上,引入预设的中断概率p2来表示随机误差满足时的概率,采用一种统计方式来代替确定方式,建立基于概率约束的导向矢量误差模型构建基于概率约束的RCB优化问题然后分析导向矢量误差δ1的范数平方的概率分布,由给定的中断概率p2计算得到等效的、更加精确的误差范数约束值ε3,构建基于该等效约束值ε3的RCB优化问题计算得到新的波束形成加权值,进一步提高对期望信号导向矢量误差的鲁棒性。一种基于概率约束的鲁棒Capon波束形成方法,具体步骤如下:S1、由M个阵元构成的均匀线阵接收到D个来自远场信源的信号,不失一般性,假设第1个信号为期望信号,其余D-1个均为干扰信号,且假设各个信号之间互不相关,且信号与噪声之间也互不相关,则第n个快拍下阵列接收数据记为x(n)=a(θ1)s1(n)+v(n)其中,a(θ1)为期望信号的阵列流型,s1(n)为阵列接收到的期望信号波形,v(n)表示阵列接收到的干扰和噪声矢量。阵列接收到的N个快拍数据可表示为如下的矢量形式:X=[x(1),…,x(N)]由阵列接收数据矩阵X可以得到阵列接收数据的样本协方差矩阵R^=1NXXH=1NΣn=1Nx(n)xH(n)]]>一般情况下,期望信号的真实导向矢量是未知的,通过相应的DOA算法进行估计得到的,这就不可避免的引入一定的估计误差。假设期望信号的预估计导向矢量为真实的信号导向矢量a(θ1)位于如下的不确定集合中,ε2表示期望信号预估计导向矢量与真实导向矢量a(θ1)之间估计误差矢量δ的范数平方的上界。S2、在RCB算法的基础上,引入预设的中断概率p2来表示随机误差满足时的概率,采用一种统计方式来代替确定方式,建立基于概率约束的导向矢量误差模型计算出更加精确的误差范数约束值ε3;S21、假设随机误差矢量δ1=[δ1,δ2,…,δM]T是一个零均值、协方差矩阵为Cδ的复对称高斯随机变量;不失一般性,令协方差矩阵为(IM表示M×M的单位矩阵,表示随机变量δm,m=1,2,…,M的方差),此时误差矢量δ1中的各个元素δm,m=1,2,…,M之间服从独立同分的零均值、方差为的复对称高斯随机变量,对其进行一定的变化,即可知随机变量δm/σδ,m=1,2,…,M服从零均值、方差为1的标准复对称高斯随机分布,若令则Δ是服从自由度为M的中心卡方分布χ2(M);S22、引入预设的中断概率p2来表示随机误差满足时的概率,建立基于概率约束的导向矢量误差模型由S21可将其转换为S23、根据随机变量Δ服从中心卡方分布χ2(M)及给定的预设概率p2,即可查询卡方分布χ2(M)的分布表得到参数的数值,随即计算得到等效的误差范数约束值ε3;S3、采用根据预设概率计算得到的等效误差范数约束值ε3,构建基于该参数ε3的RCB优化问题求得期望信号的导向矢量估计值S4、根据样本协方差矩阵和估计的期望信号导向矢量得到其稳健的阵列加权本专利技术的有益效果是:首先引本文档来自技高网
...
一种基于概率约束的鲁棒Capon波束形成方法

【技术保护点】
一种基于概率约束的鲁棒Capon波束形成方法,其特征在于,包括如下步骤:S1、由M个阵元构成的均匀线阵接收到D个来自远场信源的信号,不失一般性,假设第1个信号为期望信号,其余D‑1个均为干扰信号,且假设各个信号之间互不相关,且信号与噪声之间也互不相关,则第n个快拍下阵列接收数据记为x(n)=a(θ1)s1(n)+v(n)其中,a(θ1)为期望信号的阵列流型,s1(n)为阵列接收到的期望信号波形,v(n)表示阵列接收到的干扰和噪声矢量。阵列接收到的N个快拍数据可表示为如下的矢量形式:X=[x(1),…,x(N)]由阵列接收数据矩阵X可以得到阵列接收数据的样本协方差矩阵R^=1NXXH=1NΣn=1Nx(n)xH(n)]]>一般情况下,期望信号的真实导向矢量是未知的,通过相应的DOA算法进行估计得到的,这就不可避免的引入一定的估计误差。假设期望信号的预估计导向矢量为真实的信号导向矢量a(θ1)位于如下的不确定集合中,ε2表示期望信号预估计导向矢量与真实导向矢量a(θ1)之间估计误差矢量δ的范数平方的上界。S2、在RCB算法的基础上,引入预设的中断概率p2来表示随机误差满足时的概率,采用一种统计方式来代替确定方式,建立基于概率约束的导向矢量误差模型计算出更加精确的误差范数约束值ε3;S21、假设随机误差矢量δ1=[δ1,δ2,…,δM]T是一个零均值、协方差矩阵为Cδ的复对称高斯随机变量;不失一般性,令协方差矩阵为(IM表示M×M的单位矩阵,表示随机变量δm,m=1,2,…,M的方差),此时误差矢量δ1中的各个元素δm,m=1,2,…,M之间服从独立同分的零均值、方差为的复对称高斯随机变量,对其进行一定的变化,即可知随机变量δm/σδ,m=1,2,…,M服从零均值、方差为1的标准复对称高斯随机分布,若令则Δ是服从自由度为M的中心卡方分布χ2(M);S22、引入预设的中断概率p2来表示随机误差满足时的概率,建立基于概率约束的导向矢量误差模型由S21可将其转换为S23、根据随机变量Δ服从中心卡方分布χ2(M)及给定的预设概率p2,即可查询卡方分布χ2(M)的分布表得到参数的数值,随即计算得到等效的误差范数约束值ε3;S3、采用根据预设概率计算得到的等效误差范数约束值ε3,构建基于该参数ε3的RCB优化问题求得期望信号的导向矢量估计值S4、根据样本协方差矩阵和估计的期望信号导向矢量得到其稳健的阵列加权...

【技术特征摘要】
1.一种基于概率约束的鲁棒Capon波束形成方法,其特征在于,包括如下步骤:S1、由M个阵元构成的均匀线阵接收到D个来自远场信源的信号,不失一般性,假设第1个信号为期望信号,其余D-1个均为干扰信号,且假设各个信号之间互不相关,且信号与噪声之间也互不相关,则第n个快拍下阵列接收数据记为x(n)=a(θ1)s1(n)+v(n)其中,a(θ1)为期望信号的阵列流型,s1(n)为阵列接收到的期望信号波形,v(n)表示阵列接收到的干扰和噪声矢量。阵列接收到的N个快拍数据可表示为如下的矢量形式:X=[x(1),…,x(N)]由阵列接收数据矩阵X可以得到阵列接收数据的样本协方差矩阵R^=1NXXH=1NΣn=1Nx(n)xH(n)]]>一般情况下,期望信号的真实导向矢量是未知的,通过相应的DOA算法进行估计得到的,这就不可避免的引入一定的估计误差。假设期望信号的预估计导向矢量为真实的信号导向矢量a(θ1)位于如下的不确定集合中,ε2表示期望信号预估计导向矢量与真实导向矢量a(θ1)之间估计误差矢量δ的范数平方的上界。S2、在RCB算法的基础上,引入预设的中断概率p2来表示随机误差满足时的概率,采用一种统计方式来代替确定方式,建立基于概率约束的导向矢量误差模型计算出更加精确的误差范数约束值ε3;S21、假设随机误差矢量δ1=[δ1,δ2,…,δM]T是一个零均值、协方差矩阵为Cδ的复对称高斯随机变量;不失一般性,令协方差矩阵为(IM表示M×M的单位矩阵,表示随机变量δm,m=1,2,…,M的方差),此...

【专利技术属性】
技术研发人员:袁晓垒黄文龙甘露廖红舒
申请(专利权)人:电子科技大学
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1