一种含有末端小失配子电池的多结太阳电池及其制备方法技术

技术编号:14253452 阅读:118 留言:0更新日期:2016-12-22 15:48
本发明专利技术提供了一种含有末端小失配子电池的多结太阳电池及其制备方法,该多结电池包含设置在多结电池末端的底电池,该底电池与衬底存在晶格失配。本发明专利技术通过在电池结构末端引入小失配底电池,降低了底电池材料的禁带宽度,提高了底电池光生电流,弥补了因底电池电流不足导致的多结电池电流失配。与此同时,小失配生长的底电池由于处于外延生长的末期,因晶格失配产生的晶格质量变差并不会对其它子电池产生影响。

【技术实现步骤摘要】

本专利技术涉及一种太阳电池,具体地,涉及一种含有末端小失配子电池的多结太阳电池及其制备方法
技术介绍
当今社会,随着雾霾、沙尘暴等恶劣天气日趋激烈,人们对清洁能源的需求越来越强烈。太阳电池可将太阳能直接转换为电能,能在很大程度上减少了人们生产生活对煤炭、石油及天然气的依赖,成为利用绿色能源的最有效方式之一。III-V族半导体太阳电池的转换效率到目前为止一直在光电转换效率方面持续领跑,同时由于该类型的太阳电池具有耐高温性能好、抗辐照能力强、温度特性好等优点,被公认为是新一代高性能长寿命空间主电源,已在航天领域得到广泛应用。随着化合物半导体生长技术(如MOCVD) 的不断进步,III-V族太阳电池的效率得到了很大提高,三结太阳电池效率已经超过34%,如何进一步提升III-V族太阳电池的转换效率成为当前研究热点。提高光电转换效率的根本是最大化利用太阳光的能量,尽可能减少能量损失,因此在追求最高转换效率太阳电池的过程中通常采用增加电池结数的方式对太阳光谱进行更细致划分。随着电池结数的增多,电流匹配变得越来越困难。在多结太阳电池中,由于电池以级联方式进行组合,因此整个器件的电流受限于电流最小一结子电池,因此为了获得最优电流,通常要通过结构优化,对各个子电池进行结构调整。常用电流匹配方式包括基区厚度调整和量子阱结构。基区厚度调整主要通过调整所有子电池厚度,寻找一个最优化的基区厚度组合,缺点是不适用于于吸收系数小的材料;量子阱结构主要是通过在子电池中引入量子阱结构,增加子电池电流,缺点是生长难度大,很容易造成晶格质量变差。在宽带隙AlGaInP/AlGaAs/GaAs三结电池中,GaAs底电池的电流限制了器件整体电流,制约了多结太阳电池性能的提升。
技术实现思路
本专利技术的目的是提供一种多结太阳电池,在多结电池末端引入小失配结构,以实现电流匹配的目的,提高器件整体转换效率。为了达到上述目的,本专利技术提供了一种含有末端小失配子电池的多结太阳电池,该多结电池包含设置在多结电池末端的底电池,该底电池与衬底存在晶格失配。上述的含有末端小失配子电池的多结太阳电池,其中,该底电池与衬底的晶格失配度小于1%,失配度小于1%可以在保证外延层晶格质量的条件下,实现提高GaAs子电池光生电流的目的。上述的含有末端小失配子电池的多结太阳电池,其中,该多结电池还包含依次设置在衬底上的顶电池和中电池。上述的含有末端小失配子电池的多结太阳电池,其中,该多结电池由自下向上依次设置的GaAs衬底、AlGaInP顶电池、AlGaAs中电池和(In)GaAs底电池构成。该多结电池可作为五结及以上高效太阳电池的子电池,对实现下一代高效太阳电池具有重要支撑作用。上述的含有末端小失配子电池的多结太阳电池,其中,所述的(In)GaAs底电池中,In的含量不超过底电池质量的14%。上述的含有末端小失配子电池的多结太阳电池,其中,所述的AlGaInP顶电池禁带宽度为1.95~2.3eV,AlGaAs中电池禁带宽度为1.5~1.9eV,底电池(In)GaAs的禁带宽度为1.22~1.42eV。经过计算,这三种禁带宽度子电池组成的三结电池是能够实现转换效率>36%的多结高效太阳电池的必备基础。上述的含有末端小失配子电池的多结太阳电池,其中,该多结电池包含由下向上依次生长的衬底、缓冲层、顶电池、第一隧穿结、中电池、第二隧穿结及底电池,该底电池掺杂小失配材料。本专利技术还提供了一种根据上述的含有末端小失配子电池的多结太阳电池的制备方法,该多结太阳电池采用倒置生长方式在衬底上制备,并在最末端生长小失配电池。上述的含有末端小失配子电池的多结太阳电池的制备方法,其中,所述的生长小失配电池是指向末端电池中掺杂小失配材料。上述的含有末端小失配子电池的多结太阳电池的制备方法,其中,该方法为:在衬底上先后依次生长AlGaInP顶电池、AlGaAs中电池和(In)GaAs底电池,该底电池与衬底存在晶格失配。本专利技术提供的含有末端小失配子电池的多结太阳电池具有以下优点:相较于现有太阳能电池,在底电池GaAs中通过一定量的In掺杂,降低底电池禁带宽度(带隙越小,可吸收的光谱范围就更宽,光生电流就会越大),提高了底电池的光生电流,使得多结电池整体电流实现匹配,对多结高效电池性能的提升具有重要意义。与此同时,由于该类型电池使用倒置生长的方式,即先后依次生长AlGaInP顶电池、AlGaAs中电池和(In)GaAs底电池,最末端生长的小失配(In)GaAs底电池产生的晶格失配不会对其他两结子电池产生影响。附图说明图1为本专利技术的一种含有末端小失配子电池的多结太阳电池结构示意图,其中末端底电池7与GaAs衬底1存在一定的晶格失配。具体实施方式以下结合附图对本专利技术的具体实施方式作进一步地说明。本专利技术提供的含有末端小失配子电池的多结太阳电池,其包含设置在多结电池末端的底电池,该底电池与衬底存在晶格失配。优选地,该底电池与衬底的晶格失配度小于1%。进一步地,该多结电池还包含依次设置在衬底上的顶电池和中电池。优选地,顶电池采用AlGaInP材料,中电池采用AlGaAs材料,底电池采用(In)GaAs材料,在末端的底电池中掺杂少量的In(由于InAs比GaAs的带隙宽度小,两者混合的带隙就会比GaAs材料带隙更小),提高电池的光生电流。实施例如图1所示,以三结太阳电池为例,其包括GaAs(砷化镓)衬底1,GaAs缓冲层2,(Al0.2Ga0.8)0.5In0.5P顶电池3,第一隧穿结4,Al0.2Ga0.8As中电池5,第二隧穿结6,(In)0.05GaAs底电池7。该结构采用低压金属有机物化学气相沉积(MOCVD)设备在n型GaAs衬底上生长。该三结电池相对于末端子电池晶格完全匹配的AlGaInP/AlGaAs/GaAs三结电池来说,由于末端子电池(In)0.05GaAs的禁带宽度减小(1.42eV—>1.35eV),光生电流增加,因GaAs电流不足导致的电流失配状况就能得到改善。此外,(In)0.05GaAs与衬底GaAs的晶格失配度为0.36%,因此不会对外延层晶格质量产生较大危害。本专利技术提供的含有末端小失配子电池的多结太阳电池,通过在外延生长周期的末端引入小失配材料作为底电池的有源层,在一定程度上降低了底电池的禁带宽度,从而从光谱划分上可以产生更多光生电流,提高了底电池短路电流,弥补了因底电池电流不足导致的多结电池电流失配。与此同时,小失配生长的底电池由于处于外延生长的末期,因晶格失配产生的晶格质量变差并不会对其它子电池产生影响。该结构对实现下一代高效多结太阳电池具有重要意义。尽管本专利技术的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本专利技术的限制。在本领域技术人员阅读了上述内容后,对于本专利技术的多种修改和替代都将是显而易见的。因此,本专利技术的保护范围应由所附的权利要求来限定。本文档来自技高网
...
一种含有末端小失配子电池的多结太阳电池及其制备方法

【技术保护点】
一种含有末端小失配子电池的多结太阳电池,其特征在于,该多结电池包含设置在多结电池末端的底电池,该底电池与衬底存在晶格失配。

【技术特征摘要】
1.一种含有末端小失配子电池的多结太阳电池,其特征在于,该多结电池包含设置在多结电池末端的底电池,该底电池与衬底存在晶格失配。2.如权利要求1所述的含有末端小失配子电池的多结太阳电池,其特征在于,该底电池与衬底的晶格失配度小于1%。3.如权利要求1或2所述的含有末端小失配子电池的多结太阳电池,其特征在于,该多结电池还包含依次设置在衬底上的顶电池和中电池。4.如权利要求3所述的含有末端小失配子电池的多结太阳电池,其特征在于,该多结电池由自下向上依次设置的GaAs衬底、AlGaInP顶电池、AlGaAs中电池和(In)GaAs底电池构成。5.如权利要求4所述的含有末端小失配子电池的多结太阳电池,其特征在于,所述的(In)GaAs底电池中,In的含量不超过底电池质量的14%。6.如权利要求4所述的含有末端小失配子电池的多结太阳电池,其特征在于,所述的AlGaInP顶电池禁带宽度为1.95~2.3eV,AlGaAs中...

【专利技术属性】
技术研发人员:陆宏波李欣益张玮张梦炎郑奕张华辉陈杰杨丞张建琴
申请(专利权)人:上海空间电源研究所
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1