基于霍尔电压传感器的太阳能光伏发电检测系统及方法技术方案

技术编号:14030125 阅读:88 留言:0更新日期:2016-11-19 18:31
一种基于霍尔电压传感器的太阳能光伏发电检测系统,包括实时监测光伏组件运行状态的数据处理计算机,其特征在于它包括稳压电路单元、电压信号采集电路单元、数据处理电路单元、拨码开关单元和CAN总线数据传输电路单元;其工作方法包括电压信号的采集、处理、CAN总线传输;其优越性:霍尔电压测量精度高、测量范围大、响应速度快、测量方法线性度好、不受外界环境因素影响,且可以对太阳能电池板进行实时监测。

【技术实现步骤摘要】
(一)
:本专利技术用于太阳能光伏发电组件的实时检测领域,针对光伏发电系统的电压进行实时监控并上传数据,第一时间了解光伏组件的运行状态;尤其是一种基于霍尔电压传感器的太阳能光伏发电检测系统及方法;主要涉及霍尔传感器对光伏发电系统输出电压的实时检测和CAN总线数据传输技术。(二)
技术介绍
:随着现代工业化建设的持续发展,太阳能作为一种清洁无污染的可再生能源,可以被持续利用,在国家新能源政策的推动下,中国太阳能光伏产品产量和产能不断增加。与此同时,对于光伏发电组件的检测与维护也成为首要问题。目前,光伏发电系统大多采用直流电源,实践经验表明,在所有光伏组件的参数之中,光伏组件的输出电压最能体现光伏组件的当前状况。可以根据输出端电压判断光伏组件的发电情况,当前电压是否超出允许的极限电压。还可以判断光伏组件的均一性好坏等。因此,对光伏组件的输出端电压的测量十分重要。太阳能电池板工作状态的监测关键在于太阳能电池板输出电压信号的采集。由于串联太阳能电池板的数量较多,整组电压很高,而且每个太阳能电池板之间都有电位联系,因此直接测量比较困难。在研究太阳能电池板监测系统过程中,人们提出了许多测量串联电池板组单只电池板端电压的方法。现有测量技术主要包括共模测量法、差模测量法、继电器切换提取电压、V/F转换无触点采样提取电压、浮动地技术测量电池端电压。与现有的光伏组件电压监测系统相比,本专利技术的优点是选择霍尔电压传感器测量电压,与共模测量法相比霍尔电压测量精度高,在工作温度区内精度优于1%,该精度适合于任何波形的测量,能有效改善共模测量法精度不高的弊端;与差模测量法相比,霍尔电压测量范围大,电压测量可达6400V,很大程度上优于差模测量法,解决了差模测量法测量范围小的问题;相比之下,继电器切换提取电压方法使精度趋低,而且电容充放电时间及晶体管和隔离芯等器件动作延迟采样时间长等缺点也非常明显;采用V/F转换作为A/D转换器的缺点是响应速度慢,在小信号范围内线性度差,精度低,而霍尔电压测量方法线性度好,优于0.1%;浮动地技术测量电池端电压,地电位经常受现场干扰发生变化,影响整个系统的测量精度,与之相比霍尔电压测量法基于霍尔效应对电压进行测量,不受外界环境因素影响,保证测量精度不会发生变化。此外,现有电压检测方案只是单一的电压测量,不能做到数据的实时共享,使用繁琐,不适合光伏发电系统现场作业。与现有电压检测系统相比本专利技术的另一个优势在于数据可以实时上传,本专利技术采用CAN总线数据传输方式,可以将数据实时上传至上位机,这是其他单一的电压监控系统无法比拟的。考虑到光伏发电系统的特殊性,结合现有测量方法的优缺点,本专利技术采用霍尔电压传感器测量串联电池板组电压,霍尔传感器是根据霍尔效应制作的一种磁场传感器。(三)
技术实现思路
:本专利技术的目的在于提供一种基于霍尔电压传感器的太阳能光伏发电检测系统及方法,它可以克服现有技术的不足,是一种结构简单、操作方便,且可以实时监控光伏组件工作状态的系统,且工作方法简单、可靠。本专利技术的技术方案:一种基于霍尔电压传感器的太阳能光伏发电检测系统,包括实时监测光伏组件运行状态的数据处理计算机,其特征在于它包括稳压电路单元、电压信号采集电路单元、数据处理电路单元、拨码开关单元和CAN总线数据传输电路单元;其中所述电压信号采集电路单元的输入端采集太阳能电池板的电压信号,其输出端与数据处理电路单元的输入端连接;所述CAN总线数据传输电路单元的输入端连接数据处理电路单元的输出端,其输出端通过CAN总线与实时监测光伏组件运行状态的数据处理计算机连接;所述稳压电路单元为电压信号采集电路单元、数据处理电路单元和CAN总线数据传输电路单元提供稳定电源;所述拨码开关单元与数据处理电路单元的输入端连接。所述电压信号采集电路单元包括N个电压信号采集电路;N为大于等于1的正整数;N的取值与需要检测的连接的太阳能光伏阵列中电池板的数量相对应;所述太阳能光伏阵列是X*Y维阵列,其中,X是相互串联的太阳能电池板个数;由X个太阳能电池板构成一条支路;Y是相互并联的支路的个数;所述电压信号采集电路单元的个数N=Y;所述每个电压信号采集电路单元中电压信号采集电路的个数为X+1;所述光伏阵列中需要的电压信号采集电路的个数N=X*Y+Y。所述电压信号采集电路是由霍尔传感器H、电阻R、电容C和接线端子J构成;其中所述霍尔传感器H有1管脚、3管脚、4管脚、5管脚、6管脚和8管脚;所述接线端子J的两个端子分别连接与霍尔传感器H有1管脚和霍尔传感器H的8管脚之间;所述电阻R的一端与霍尔传感器H的6管脚连接,其另一端与电容C的一端连接,同时连接数据处理电路单元的输入端;所述电容C的另一端接地;所述霍尔传感器H的3管脚连接15V电源;所述霍尔传感器H的4管脚置空;所述霍尔传感器H的5管脚接地。所述太阳能光伏阵列是6*4维阵列,4条支路;所述电压信号采集电路单元的个数为4个;所述每个电压信号采集电路单元是由7个的电压信号采集电路构成,分别记为电压信号采集电路I、电压信号采集电路II、电压信号采集电路III、电压信号采集电路IV、电压信号采集电路V、电压信号采集电路VI和电压信号采集电路VII;其中,所述电压信号采集电路I、电压信号采集电路II、电压信号采集电路III、电压信号采集电路IV、电压信号采集电路V、电压信号采集电路VI分别采集6块太阳能光伏电池板的电压信号;所述电压信号采集电路VII则采集整条支路总的电压信号。所述电压信号采集电路I是由霍尔传感器H1、接线端子J5、电阻R101、电容C101构成;所述接线端子J5的两个端子分别连接与霍尔传感器H1有1管脚和霍尔传感器H1的8管脚之间;所述电阻R101的一端与霍尔传感器H1的6管脚连接,其另一端与电容C101的一端连接,同时连接数据处理电路单元的输入端;所述电容C101的另一端接地;所述霍尔传感器H1的3管脚连接15V电源;所述霍尔传感器H1的4管脚置空;所述霍尔传感器H1的5管脚接地;所述电压信号采集电路II是由霍尔传感器H2、接线端子J6、电阻R102、电容C102构成;所述接线端子J6的两个端子分别连接与霍尔传感器H2有1管脚和霍尔传感器H2的8管脚之间;所述电阻R102的一端与霍尔传感器H2的6管脚连接,其另一端与电容C102的一端连接,同时连接数据处理电路单元的输入端;所述电容C102的另一端接地;所述霍尔传感器H2的3管脚连接15V电源;所述霍尔传感器H2的4管脚置空;所述霍尔传感器H2的5管脚接地;所述电压信号采集电路III是由霍尔传感器H3、接线端子J7、电阻R103、电容C103构成;所述接线端子J7的两个端子分别连接与霍尔传感器H3有1管脚和霍尔传感器H3的8管脚之间;所述电阻R103的一端与霍尔传感器H3的6管脚连接,其另一端与电容C103的一端连接,同时连接数据处理电路单元的输入端;所述电容C103的另一端接地;所述霍尔传感器H3的3管脚连接15V电源;所述霍尔传感器H3的4管脚置空;所述霍尔传感器H3的5管脚接地;所述电压信号采集电路IV是由霍尔传感器H4、接线端子J8、电阻R104、电容C104构成;所述接线端子J8的两个端子分别连接与霍尔传感器H4有1管脚和霍尔传感本文档来自技高网
...
基于霍尔电压传感器的太阳能光伏发电检测系统及方法

【技术保护点】
一种基于霍尔电压传感器的太阳能光伏发电检测系统,包括实时监测光伏组件运行状态的数据处理计算机,其特征在于它包括稳压电路单元、电压信号采集电路单元、数据处理电路单元、拨码开关单元和CAN总线数据传输电路单元;其中所述电压信号采集电路单元的输入端采集太阳能电池板的电压信号,其输出端与数据处理电路单元的输入端连接;所述CAN总线数据传输电路单元的输入端连接数据处理电路单元的输出端,其输出端通过CAN总线与实时监测光伏组件运行状态的数据处理计算机连接;所述稳压电路单元为电压信号采集电路单元、数据处理电路单元和CAN总线数据传输电路单元提供稳定电源;所述拨码开关单元与数据处理电路单元的输入端连接。

【技术特征摘要】
1.一种基于霍尔电压传感器的太阳能光伏发电检测系统,包括实时监测光伏组件运行状态的数据处理计算机,其特征在于它包括稳压电路单元、电压信号采集电路单元、数据处理电路单元、拨码开关单元和CAN总线数据传输电路单元;其中所述电压信号采集电路单元的输入端采集太阳能电池板的电压信号,其输出端与数据处理电路单元的输入端连接;所述CAN总线数据传输电路单元的输入端连接数据处理电路单元的输出端,其输出端通过CAN总线与实时监测光伏组件运行状态的数据处理计算机连接;所述稳压电路单元为电压信号采集电路单元、数据处理电路单元和CAN总线数据传输电路单元提供稳定电源;所述拨码开关单元与数据处理电路单元的输入端连接。2.根据权利要求1所述一种基于霍尔电压传感器的太阳能光伏发电检测系统,其特征在于所述电压信号采集电路单元包括N个电压信号采集电路;N为大于等于1的正整数;N的取值与需要检测的连接的太阳能光伏阵列中电池板的数量相对应;所述太阳能光伏阵列是X*Y维阵列,其中,X是相互串联的太阳能电池板个数;由X个太阳能电池板构成一条支路;Y是相互并联的支路的个数;所述电压信号采集电路单元的个数N=Y;所述每个电压信号采集电路单元中电压信号采集电路的个数为X+1;所述光伏阵列中需要的电压信号采集电路的个数N=X*Y+Y。3.根据权利要求2所述一种基于霍尔电压传感器的太阳能光伏发电检测系统,其特征在于太阳能光伏阵列是6*4维阵列,共4条支路;所述电压信号采集电路单元的个数N=4;所述每个电压信号采集电路单元中需要的电压信号采集电路的个数为7个;所述电压信号采集电路单元是由7个的电压信号采集电路构成,即M=6,N=7,分别记为电压信号采集电路I、电压信号采集电路II、电压信号采集电路III、电压信号采集电路IV、电压信号采集电路V、电压信号采集电路VI和电压信号采集电路VII;其中,所述电压信号采集电路I、电压信号采集电路II、电压信号采集电路III、电压信号采集电路IV、电压信号采集电路V、电压信号采集电路VI分别采集6块太阳能光伏电池板的电压信号;所述电压信号采集电路VII则采集整条支路总的电压信号;所述电压信号采集电路是由霍尔传感器H、电阻R、电容C和接线端子J构成;其中所述霍尔传感器H有1管脚、3管脚、4管脚、5管脚、6管脚和8管脚;所述接线端子J的两个端子分别连接与霍尔传感器H有1管脚和霍尔传感器H的8管脚之间;所述电阻R的一端与霍尔传感器H的6管脚连接,其另一端与电容C的一端连接,同时连接数据处理电路单元的输入端;所述电容C的另一端接地;所述霍尔传感器H的3管脚连接15V电源;所述霍尔传感器H的4管脚置空;所述霍尔传感器H的5管脚接地;所述电压信号采集电路I是由霍尔传感器H1、接线端子J5、电阻R101、电容C101构成;所述接线端子J5的两个端子分别连接与霍尔传感器H1有1管脚和霍尔传感器H1的8管脚之间;所述电阻R101的一端与霍尔传感器H1的6管脚连接,其另一端与电容C101的一端连接,同时连接数据处理电路单元的输入端;所述电容C101的另一端接地;所述霍尔传感器H1的3管脚连接15V电源;所述霍尔传感器H1的4管脚置空;所述霍尔传感器H1的5管脚接地;所述电压信号采集电路II是由霍尔传感器H2、接线端子J6、电阻R102、电容C102构成;所述接线端子J6的两个端子分别连接与霍尔传感器H2有1管脚和霍尔传感器H2的8管脚之间;所述电阻R102的一端与霍尔传感器H2的6管脚连接,其另一端与电容C102的一端连接,同时连接数据处理电路单元的输入端;所述电容C102的另一端接地;所述霍尔传感器H2的3管脚连接15V电源;所述霍尔传感器H2的4管脚置空;所述霍尔传感器H2的5管脚接地;所述电压信号采集电路III是由霍尔传感器H3、接线端子J7、电阻R103、电容C103构成;所述接线端子J7的两个端子分别连接与霍尔传感器H3有1管脚和霍尔传感器H3的8管脚之间;所述电阻R103的一端与霍尔传感器H3的6管脚连接,其另一端与电容C103的一端连接,同时连接数据处理电路单元的输入端;所述电容C103的另一端接地;所述霍尔传感器H3的3管脚连接15V电源;所述霍尔传感器H3的4管脚置空;所述霍尔传感器H3的5管脚接地;所述电压信号采集电路IV是由霍尔传感器H4、接线端子J8、电阻R104、电容C104构成;所述接线端子J8的两个端子分别连接与霍尔传感器H4有1管脚和霍尔传感器H4的8管脚之间;所述电阻R104的一端与霍尔传感器H4的6管脚连接,其另一端与电容C104的一端连接,同时连接数据处理电路单元的输入端;所述电容C104的另一端接地;所述霍尔传感器H4的3管脚连接15V电源;所述霍尔传感器H4的4管脚置空;所述霍尔传感器H4的5管脚接地;所述电压信号采集电路V是由霍尔传感器H5、接线端子J9、电阻R105、电容C105构成;所述接线端子J9的两个端子分别连接与霍尔传感器H5有1管脚和霍尔传感器H5的8管脚之间;所述电阻R105的一端与霍尔传感器H5的6管脚连接,其另一端与电容C105的一端连接,同时连接数据处理电路单元的输入端;所述电容C105的另一端接地;所述霍尔传感器H5的3管脚连接15V电源;所述霍尔传感器H5的4管脚置空;所述霍尔传感器H5的5管脚接地;所述电压信号采集电路VI是由霍尔传感器H6、接线端子J10、电阻R106、电容C106构成;所述接线端子J10的两个端子分别连接与霍尔传感器H6有1管脚和霍尔传感器H6的8管脚之间;所述电阻R106的一端与霍尔传感器H6的6管脚连接,其另一端与电容C106的一端连接,同时连接数据处理电路单元的输入端;所述电容C106的另一端接地;所述霍尔传感器H6的3管脚连接15V电源;所述霍尔传感器H6的4管脚置空;所述霍尔传感器H6的5管脚接地;所述电压信号采集电路VII是由霍尔传感器H7、接线端子J11、电阻R107、电容C107构成;所述霍尔传感器H7有1管脚、5管脚、6管脚、7管脚、9管脚和10管脚;所述接线端子J11的两个端子分别连接与霍尔传感器H7有1管脚和霍尔传感器H7的5管脚之间;所述电阻R107的一端与霍尔传感器H7的9管脚连接,其另一端与电容C107的一端连接,同时连接数据处理电路单元的输入端;所述电容C107的另一端接地;所述霍尔传感器H7的10管脚连接15V电源;所述霍尔传感器H7的6管脚置空;所述霍尔传感器H7的7管脚接地。4.根据权利要求3所述一种基于霍尔电压传感器的太阳能光伏发电检测系统,其特征在于所述霍尔传感器H1、霍尔传感器H2、霍尔传感器H3、霍尔传感器H4、霍尔传感器H5、霍尔传感器H6是型号为NHS01的霍尔电压传感器;所述霍尔传感器H7是型号为IHV001的霍尔电压传感器。5.根据权利要求1所述一种基于霍尔电压传感器的太阳能光伏发电检测系统,其特征在于所述数据处理电路单元是由单片机U1、电阻R28、电阻R1、电阻R5、电容C10、电容C1、电容C2、电容C3、晶振Y1、LED灯L2、接线端子J1构成;其中,所述电容C10的一端与单片机U1连接,其另一端接地;所述电容C1和电容C2一端同时接地,而另一端则分别与晶振Y1的两端相连;所述晶振Y1的两端还分别与单片机U1连接;所述电阻R28的一端与单片机U1连接,其另一端连接接线端子J1;所述电容C3的一端连接接线端子J1;其另一端接地;所述电阻R1的一端连接接线端子J1;其另一端接电源VCC;所述接线端子J1还与电源VCC连接;所述电阻R5的一端与单片机U1连接,其另一端与LED灯L2的一端连接;所述LED灯L2的另一端接地;所述接线端子J1依编程线与实时监测光伏组件运行状态的数据处理计算机的USB口连接;所述稳压电路单元是由电容C4、电容C5、电容CV2、电容CV3、二极管D1、二极管D2、接线端子J2、接线端子J4、电源芯片MC7805和电源芯片MC7815构成;所述电容C4正极端连接电源VCC,负极端接地;;所述电容C5正极端连接+15V电源,负极端接地;所述电容CV2正极端连接+24V直流电源,负极端接地;所述电容CV3正极端连接连接+24V直流电源,负极端接地;所述二极管D1的负极与电源芯片MC7805的电压输入...

【专利技术属性】
技术研发人员:徐晓宁马鸿旺尚立成蒋乐曹珍珍闫培斌张海潮
申请(专利权)人:天津理工大学
类型:发明
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1