当前位置: 首页 > 专利查询>东南大学专利>正文

一种B2B平台供应商推荐方法和系统技术方案

技术编号:13893438 阅读:107 留言:0更新日期:2016-10-24 17:49
本发明专利技术公开了一种基于超图的多蚁群并行组合聚类方法,属于数据挖掘技术领域。本发明专利技术针对高维海量数据的快速准确聚类,将改进的基于信息熵的单蚁群聚类算法与超图相结合,其主要思路是不同的蚁群采用改进的基于信息熵的单蚁群聚类算法进行独立地并行工作,通过超图进行聚类结果组合得到不同的相似矩阵,再进行信息交换相互合作,利用相似矩阵对单蚁群聚类过程进行修正;经过反复迭代,最终得到最优的聚类结果。本发明专利技术还公开了一种B2B平台供应商推荐方法及系统。本发明专利技术可进一步提高面对高维海量数据时的算法搜索效率,同时有效克服现有技术易于过早陷入局部最优解的缺陷,提升聚类结果的准确性。

【技术实现步骤摘要】

本专利技术涉及一种聚类方法,尤其涉及一种基于超图的多蚁群并行组合聚类方法,属于计算机数据挖掘

技术介绍
电子商务环境下,越来越多的中小企业入驻第三方B2B电子商务平台。平台方可利用已有的海量数据,基于自设的关键因素指标或者基于用户自身的采购需求,向用户推荐符合要求的供应商。虽然相较于传统商业模式,扩大了商业机会,降低了搜索成本,但是由于提供同质商品的企业的大量增加以及描述企业商品质量、服务质量的信息维数的大幅扩展,如何从现有大数据中快速准确地挖掘出少量最能符合用户需求的供应商信息推荐给客户,就成了摆在所有B2B平台面前的主要问题。数据挖掘是获取符合用户需求的供应商信息的重要方法,而聚类则是数据挖掘中的重要内容,属于无监督学习的过程。聚类的基本原则是根据数据间的不同特征对数据集进行分簇,发现数据中隐含的模式,聚类结果是同一簇中的数据相似度尽量大,不同簇的数据相似度尽量小。目前存在许多经典聚类算法,其中近年来科学家根据蚂蚁群体智能所提出的蚁群聚类算法由于可以自动生成集群,不需要预先设定聚类中心,可以有效地发现数据中隐藏的共同特征,因此蚁群聚类算法在数据分析中已受到越来越多的重本文档来自技高网...

【技术保护点】
一种基于超图的多蚁群并行组合聚类方法,其特征在于,包括以下步骤:S1、多个蚁群并行地对数据对象分别进行基于信息熵的单蚁群聚类,并将聚类结果传递给蚁后;每个蚁群在进行聚类时,拾起、放下对象的判断方法具体如下:对于空载蚂蚁,将拾取对象Oi前的信息熵E1与拾取对象Oi后的信息熵E2和调整因子v的乘积进行比较,如果E1>vE2,则拾起对象Oi;对于负载蚂蚁,将放下对象Oi前的信息熵E1与放下对象Oi后的信息熵E2和调整因子v的乘积进行比较,如果E1>vE2,则放下对象;各蚁群的调整因子在聚类过程中的变化规律各不相同;S2、蚁后将本轮所收到的所有聚类结果映射为一个超图的邻接矩阵H,并按照下式得到该超图的...

【技术特征摘要】
1.一种基于超图的多蚁群并行组合聚类方法,其特征在于,包括以下步骤:S1、多个蚁群并行地对数据对象分别进行基于信息熵的单蚁群聚类,并将聚类结果传递给蚁后;每个蚁群在进行聚类时,拾起、放下对象的判断方法具体如下:对于空载蚂蚁,将拾取对象Oi前的信息熵E1与拾取对象Oi后的信息熵E2和调整因子v的乘积进行比较,如果E1>vE2,则拾起对象Oi;对于负载蚂蚁,将放下对象Oi前的信息熵E1与放下对象Oi后的信息熵E2和调整因子v的乘积进行比较,如果E1>vE2,则放下对象;各蚁群的调整因子在聚类过程中的变化规律各不相同;S2、蚁后将本轮所收到的所有聚类结果映射为一个超图的邻接矩阵H,并按照下式得到该超图的对称相似性矩阵Z: Z = 1 r HH T , ]]>其中,上标T表示矩阵转置,r为蚁群的数量;蚁后从本轮所收到的聚类结果中选择相应的聚类结果传递给各蚁群,同时将相似性矩阵Z传递给各蚁群;S3、各蚁群分别以所收到的聚类结果作为本次聚类的初始数据集,并行地分别进行基于信息熵的单蚁群聚类,并将聚类结果传递给蚁后;每个蚁群在进行聚类时,拾起、放下对象的判断方法具体如下:对于空载蚂蚁,将拾取对象Oi前的改进信息熵E′1与拾取对象Oi后的改进信息熵E2′和调整因子v的乘积进行比较,如果E′1>vE′2,则拾起对象Oi;对于负载蚂蚁,将放下对象Oi前的改进信息熵E′1与放下对象Oi后的改进信息熵E′2和调整因子v的乘积进行比较,如果E′1>vE′2,则放下对象Oi;所述改进信息熵的计算方法如下: E ′ ( s 2 ) = - Σ i = 1 Σ x ∈ X n ( p ′ ( x ) · log p ′ ( x ) ) ]]>式中,E′(s2)表示蚂蚁当前所能观察到的边长为s的正方形区域内对象的改进信息熵,Xn表示对象所具有的n个相互独立的属性的取值集合, p ′ ( x ) = ( max z o i o j ) p ( ...

【专利技术属性】
技术研发人员:武忠李媛张丽媛吕思杰赵飞祥
申请(专利权)人:东南大学无锡云歌电子商务有限公司
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1