一种时分复用的大功率相控阵超声信号发生装置制造方法及图纸

技术编号:13510962 阅读:128 留言:0更新日期:2016-08-11 13:42
本发明专利技术提供了一种时分复用的大功率相控阵超声信号发生装置,主要用于混凝土结构的超声检测,包括:上位机控制端、现场可编程逻辑门阵列、时分复用高压脉冲放大电路、超声换能器阵列和数据分配器;现场可编程逻辑门阵列连接时分复用高压脉冲放大电路的输入端,数据分配器的输入端分别连接现场可编程逻辑门阵列的控制信号输出端以及时分复用高压脉冲放大电路的输出端;数据分配器的输出端连接超声换能器阵列。本发明专利技术以大幅缩小电路规模,降低设备体积,节省设备成本,可产生可以聚焦的声束,用于工业上的混凝土结构超声无损检测;也可调节输出信号的脉宽,以适用于不同中心频率的换能器,延时精度可达ηs级,满足混凝土结构超声无损检测的要求。

【技术实现步骤摘要】
【专利摘要】本专利技术提供了一种时分复用的大功率相控阵超声信号发生装置,主要用于混凝土结构的超声检测,包括:上位机控制端、现场可编程逻辑门阵列、时分复用高压脉冲放大电路、超声换能器阵列和数据分配器;现场可编程逻辑门阵列连接时分复用高压脉冲放大电路的输入端,数据分配器的输入端分别连接现场可编程逻辑门阵列的控制信号输出端以及时分复用高压脉冲放大电路的输出端;数据分配器的输出端连接超声换能器阵列。本专利技术以大幅缩小电路规模,降低设备体积,节省设备成本,可产生可以聚焦的声束,用于工业上的混凝土结构超声无损检测;也可调节输出信号的脉宽,以适用于不同中心频率的换能器,延时精度可达ηs级,满足混凝土结构超声无损检测的要求。【专利说明】一种时分复用的大功率相控阵超声信号发生装置
本专利技术属于电子科学领域,具体涉及的是利用时分复用技术,具体涉及的是一种时分复用的大功率相控阵超声信号发生装置。
技术介绍
超声无损检测技术在现代工业发展过程中作用巨大,与传统单探头超声检测技术相比,相控阵超声无损检测技术具有检测范围广、深度大、定位准确等优点。相控阵探头是由多个换能器组成的一个换能器阵列,每一路换能器阵列由一路高压脉冲信号来控制。通过控制激励脉冲的延时,产生多路相位不同的超声信号,使得它们在预期聚焦点产生干涉加强的效果。改变延时参数便可实现声束的动态聚焦及偏转,从而达到扫描的目的。为实现声束的动态聚焦及偏转,需要一套可产生多路用于激励超声换能器的高压脉冲信号的信号发生装置。目前国内外市场上既有的相控阵超声信号发生器都是每一路换能器前均接有一体积较大的高压脉冲放大电路。由于探头数量多在16路以上,故整个超声检测装置体积庞大,且成本较高。而相控阵超声信号聚焦的延时数学模型决定了相隔较远的换能器阵元产生超声信号的时间不会重叠,故可使用时分复用技术来使多个换能器阵元复用一个放大电路,从而大幅减少整个超声发射装置的体积,以及降低其成本。
技术实现思路
本专利技术的目的是针对市场上既有的一些相控阵超声信号发生器体积庞大、成本高的问题,根据数字信号的时分复用技术,而本专利技术目的是提供一种体积小、成本低的相控阵超声信号发生装置,即时分复用的大功率相控阵超声信号发生装置,其产生可以聚焦的声束,用于工业上的混凝土结构超声无损检测,延时精度可达rIs级,满足混凝土结构超声无损检测的要求。为实现上述目的,本专利技术的技术方案如下: 一种时分复用的大功率相控阵超声信号发生装置,其特征在于,其包括:它包括:上位机控制端,用于控制激励脉冲的延时和脉宽; 现场可编程逻辑门阵列(FPGA),用于产生ns级脉冲信号; 时分复用高压脉冲放大电路,用于放大现场可编程逻辑门阵列(FPGA)产生的激励脉冲信号,产生足以激发超声换能器的大功率信号; 超声换能器阵列,用于产生多路相位不同的声波,以产生可偏转的、聚焦位置可变的声束; 数据分配器,用于对时分复用高压脉冲放大电路放大激励脉冲信号分配到超声换能器阵列的输出通道上; 所述现场可编程逻辑门阵列的输出端连接时分复用高压脉冲放大电路的输入端,所述述现场可编程逻辑门阵列的输入端连接上位机控制端,所述数据分配器的输入端分别连接现场可编程逻辑门阵列的控制信号输出端以及时分复用高压脉冲放大电路的输出端;所述数据分配器的输出端连接超声换能器阵列。进一步的,所述时分复用高压脉冲放大电路包括HV732集成芯片以及与HV732集成芯片连接的两个二极管BAV99;所述现场可编程逻辑门阵列的输出端连接HV732集成芯片的输入端,所述HV732集成芯片的输出端连接两个二极管BAV99;所述现场可编程逻辑门阵列产生的激励脉冲信号传送至HV732集成芯片的输入端,经HV732集成芯片放大后,再由两个二极管BAV99差动输出。为降低设备体积,节省设备成本,所述时分复用高压脉冲放大电路设置有四组,使用4组高压脉冲放大电路来分时放大16路激励脉冲信号。所述四组时分复用高压脉冲放大电路分别为第一时分复用高压脉冲放大电路、第二时分复用高压脉冲放大电路、第三时分复用高压脉冲放大电路和第四时分复用高压脉冲放大电路;所述第一至第四时分复用高压脉冲放大电路并联连接。所述现场可编程逻辑门阵列的输出16路激励脉冲信号,16路激励脉冲信号平均分为4组,每组激励脉冲信号设置有4路激励脉冲信号,且4路激励脉冲信号并联至HV732集成芯片的输入端,经HV732集成芯片放大后,再由两个二极管BAV99差动输出。进一步的,所述数据分配器设置有四个,分别为第一至第四数据分配器,所述第一至第四数据分配器均设置有一路输入端和四路输出端,通过设置四路输出端用于选择激励脉冲信号的输出通道。使用四路数据分配器(一路输入,四路输出)来选择激励脉冲信号的输出通道。为保证满足时分复用条件,即满足一组信号通道所产生信号在时间上没有重叠,需对换能器阵列中各阵元进行分组。换能器阵列一字排开,每个阵元按I至16依次编号,SP所述换能器阵列是由第1-16号换能器组成。所述第1、5、9、13号换能器通过第一数据分配器连接第一时分复用高压脉冲放大电路;所述第2、6、10、14号换能器通过第二数据分配器连接第二时分复用高压脉冲放大电路;所述第3、7、11、15号换能器通过第三数据分配器连接第三时分复用高压脉冲放大电路;所述第4、8、12、16号换能器通过第四数据分配器连接第四时分复用高压脉冲放大电路。作为优选方案,使用现场可编程逻辑门阵列(FPGA)根据当前正在输出小信号脉冲的通道序号来选择四路数据分配器的输出通道。避免的四路数据分配器读取控制信号的延时带来的影响,输出通道选择控制信号在被选通道的脉冲信号输出前传输至数据分配器,即所述第一至第四数据分配器输出当前脉冲信号的同时,并行接收来自现场可编程逻辑门阵列的输出通道选择控制信号,此时由现场可编程逻辑门阵列控制的输出通道选择锁存位关闭,故不会对当前输出信号的通道选择产生影响;待下一次脉冲输出时,由现场可编程逻辑门阵列控制的输出通道选择锁存位打开,此时数据分配器已经完成对输出通道选择控制信号的读取,故输出通道能立即变为所选通道。本专利技术的有益效果如下: (I)本专利技术主要用于混凝土结构的超声检测,以现场可编程逻辑门阵列(FPGA)为主控制器,用上位机控制其输出延时和脉宽可调的脉冲信号。同时通过可时分复用的高压脉冲放大电路以大幅缩小电路规模,降低设备体积,节省设备成本。(2)本专利技术采用的可时分复用的高压脉冲放大电路最多可满足时间上不重叠的四路信号的分时放大,并能并行地输出16路延时可调的高压脉冲信号激发超声换能器阵列产生可以聚焦的声束,用于工业上的混凝土结构超声无损检测;也可调节输出信号的脉宽,以适用于不同中心频率的换能器;延时精度可达ns级,满足混凝土结构超声无损检测的要求。【附图说明】: 图1是本专利技术的系统结构示意图。【具体实施方式】为使本专利技术实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合【具体实施方式】,进一步阐述本专利技术。参照附图1,现场可编程逻辑门阵列(FPGA)的小信号脉冲产生部分,本专利技术的小信号脉冲产生流程如下: 通过上位机即计算机控制现场可编程逻辑门阵列(FPGA)输出延时和脉宽可调的脉冲信号。计算机与现场可编程逻辑门本文档来自技高网
...

【技术保护点】
一种时分复用的大功率相控阵超声信号发生装置,其特征在于,其包括:上位机控制端,用于控制激励脉冲的延时和脉宽;现场可编程逻辑门阵列,用于产生ηs级脉冲信号;时分复用高压脉冲放大电路,用于放大现场可编程逻辑门阵列产生的激励脉冲信号,产生足以激发超声换能器的大功率信号;超声换能器阵列,用于产生多路相位不同的声波,以产生可偏转的、聚焦位置可变的声束;数据分配器,用于对时分复用高压脉冲放大电路放大激励脉冲信号分配到超声换能器阵列的输出通道上;所述现场可编程逻辑门阵列的输出端连接时分复用高压脉冲放大电路的输入端,所述述现场可编程逻辑门阵列的输入端连接上位机控制端,所述数据分配器的输入端分别连接现场可编程逻辑门阵列的控制信号输出端以及时分复用高压脉冲放大电路的输出端;所述数据分配器的输出端连接超声换能器阵列。

【技术特征摘要】

【专利技术属性】
技术研发人员:朱云峰韩庆邦汪冰滢陈莉莉朱昌平
申请(专利权)人:河海大学常州校区
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1