放大率法测焦距的光具座制造技术

技术编号:12964871 阅读:90 留言:0更新日期:2016-03-03 10:40
本实用新型专利技术公开了一种放大率法测焦距的光具座,包括依次在设置主光轴上的平行光管组件,透镜夹持器,测量显微镜,以及与主光轴平行的Y轴一维导轨,还包括CCD接收器,以及与主光轴垂直的X轴一维导轨,X轴一维导轨上设有滑块、控制滑块移动的丝杠和测量滑块移动距离的光栅尺,测量显微镜固定安装在滑块上;光栅尺与光栅尺数显表连接,CCD接收器与图像显示器连接。本实用新型专利技术通过对传统的放大率测量焦距的光具座进行改造,增加X轴高精度直线导轨,利用双像目镜对准,将焦距测量误差由0.5%-1%减小到0.1%-0.5%,同时提高了测量范围和测量速度。

【技术实现步骤摘要】

本技术属于光学仪器测量
,具体涉及一种放大率法测焦距的测量装置。
技术介绍
光学系统的特征参数作为光学仪器设计的依据,这种特性参数主要地决定了光学系统的适用范围。焦距是光学系统重要的特性,只要知道焦距和焦点的位置,就能完全确定任何位置上的物体经过该光学系统所成像的位置、大小、正倒和虚实等全部信息。所以准备测量光学系统的焦距,不仅是验收产品,考核其是否达到设计要求的手段,而且也是发现或者找出从设计,加工到装配整个过程中所存在问题的重要方法。放大率法测量焦距,是目前在生产中最常用的焦距测量方法,因为它所需要的设备简单,测量操作比较方便,测量精度比较高。但是该方法也存在一些弊端。例如,系统误差比较难以校正,需要根据经验需要相匹配的物镜,对一些高精度测量要求不能满足,测量读数不方便,人为判读误差较大。
技术实现思路
专利技术目的:本技术的目的是通过对传统的放大率测量焦距的光具座进行改造,以提高测量精度、测量范围和测量速度。技术方案:为实现上述专利技术目的,本技术采用的技术方案是:一种放大率法测焦距的光具座,包括依次在设置主光轴上的平行光管组件,透镜夹持器,测量显微镜,以及与主光轴平行的Y轴一维导轨,还包括C⑶接收器,以及与主光轴垂直的X轴一维导轨,X轴一维导轨上设有滑块、控制滑块移动的丝杠和测量滑块移动距离的光栅尺,所述测量显微镜固定安装在所述滑块上;所述光栅尺与光栅尺数显表电连接,所述C⑶接收器与图像显示器电连接。所述平行光管组件包括光源、分划板、平行光管和物镜,所述分划板位于物镜的焦平面。作为优选,所述测量显微镜内设有十字分划板,所述CCD接收器接收到的图像包括平行光管组件中的分划板的像和显微镜内十字分划线的像。作为优选,所述分划板上设有至少一对竖直方向上的平行线,最外侧的一对线的长度最长。进一步地,该光具座还包括电机和图像识别控制模块,所述丝杠与电机传动连接,所述电机与图像识别控制模块连接,接收图像识别控制模块输出的转动控制信号。进一步地,所述测量显微镜下方设有Y轴和Z轴微调二维导轨。工作原理:放大率法测量焦距的公式为f=f0 (y’ /y),其中f0是平行光管物镜的焦距,y是位于平行光管物镜焦平面的分划板上一对刻线的间隔距离,1,是这对刻线经过被测透镜所成像的间隔距离。在测量时,fo和y是预先可通过分度多齿台、影像测量仪等精密测量得到的准确值,测量关键点在于获得分划板成像的一对刻线的间隔距离。本技术中,分划板经过平行光管物镜成像在无限远处,再经过透镜夹持器上面的被测透镜,透镜的焦面通过测量显微镜成像在CCD接收器上并通过图像显示器来显示,我们通过移动高精度X轴一维导轨上的滑块带动测量显微镜和CCD接收器移动,并采用精度光栅尺来精确测量出移动距离,基于图像的比对,能够精确的测量出分划板上一对刻线成像的间隔距离。这样我们就可以通过上述的公式来精确的计算出被测透镜的焦距f。有益效果:与现有技术相比,本技术具有如下优点:1、传统设备因为需要通过显微镜目视,受到显微镜视场的限制,所以需要根据被测件不同的焦距选择不同倍率的物镜,本技术通过CCD接收器配合高精度光栅尺可以实现在X轴导轨范围内的任意范围移动,理论上任意物镜都可以使用,物镜选装简单。2、本技术光具座测量速度快,采用双像目镜提高对线精度,消除目视误差,精度高,读数快。焦距测量误差由0.5%-1%减小到0.1%-0.5%,且同时提高测量范围和测量速度。3、用X轴一维导轨、高精度光栅尺等组成的高精度平移台代替传统的分厘卡式读数,提高了测量精度,并配置Y轴和Z轴的微调装置,调试更方便。4、通过结合图像自动识别和电机传动,可以实现成像距离的自动读取,能够进一步提高测量精度和速度。【附图说明】图1为本技术实施例的结构示意图。图2为本技术实施例中(XD接收器接收图像的示意图。图中,1:平行光管组件,2:透镜夹持器,3:测量显微镜,4:C⑶接收器,5:Y轴一维导轨,6:Χ轴一维导轨,7:光栅尺,8:滑块,9:光栅尺数显表,10:图像显示器。【具体实施方式】下面结合具体实施例,进一步阐明本技术,应理解这些实施例仅用于说明本技术而不用于限制本技术的范围,在阅读了本技术之后,本领域技术人员对本技术的各种等价形式的修改均落于本申请所附权利要求所限定的范围。如图1所示,本技术实施例公开的一种放大率法测焦距的光具座,包括依次在设置主光轴上的平行光管组件1,透镜夹持器2,测量显微镜3,(XD接收器4,与主光轴平行的Y轴一维导轨5,以及与主光轴垂直的X轴一维导轨6,X轴一维导轨6上设有滑块8、丝杠(图中未示出)和高精度光栅尺7,丝杠控制滑块8在X轴一维导轨6上滑动,测量显微镜3固定安装在滑块8上,CCD接收器4安装在测量显微镜3目镜端,采集显微镜3目镜中图像;通过调节丝杠,可以带动测量显微镜3和(XD接收器4在X轴往复运动。滑块8侧面贴着光栅尺7的读数头,光栅尺7的光带贴在X轴一维导轨6的基座上面,光栅尺7与光栅尺数显表9连接,通过光栅尺数显表9直接读出滑块8上显微镜3的移动距离,(XD接收器4与图像显示器10连接,通过图像显示器10显示图像。除了在测量显微镜3下面设置X轴高精度一维导轨,显微镜3的下方还设有Y轴和Z轴微调二维导轨,以方便调试的便利性和准确性。平行光管组件1包括光源、分划板、平行光管和物镜,分划板位于物镜的焦平面,分划板经过平行光管物镜、被测透镜,通过测量显微镜3成像在CCD接收器4,测量显微镜3内也设有十字分划线,一起成像在(XD接收器4,并通过图像显示器10显示,如图2所示,其中黑线四对分划线为平行光管组件1中光源后面的分划板的成像,浅色(实际应用中为绿色等亮色)十字线为显微镜3内的分划板成像。前面公式中y’为分划板经过被测透镜所成像的间隔距离,此处可选择为四对线中最外侧的最长的一对线(A、B)的距离。测量过程中,通过观察十字像与线A和线B的重合情况来调整测量显微镜3的位置,当十字线从线A上移动到线B上,或从线B上移动到线A上,显微镜3的移动距离即为线A与线B的间隔距离,该距离通过高精度(lum)光栅尺7读出,并通过光栅尺数显表9显示。最后根据公式来精确的计算出被测透镜的焦距f。测量显微镜3的移动控制,可以通过人眼观察图像进行对线,手动调整丝杠来实现。也可以通过图像识别控制模块和电机来控制,该图像识别控制模块基于CCD接收器接收到的图像,进行识别,得出显微镜3是否需要移动和移动方向的信息,向电机输出相应信号,自动控制显微镜3移动。例如在图像显示器系统中部署图像自动识别程序,通过软件提取出十字像中心点、十字线与线A交点、十字线与线B交点,通过判断三点的位置关系,得出显微镜3的移动方向,并根据实时接收到的图像判断是否重合,发出继续移动或停止移动的信号。将丝杠与电机连接,电机与图像显示器10连接,接收其转动控制信号,自动控制丝杠转动,实现测量显微镜3的自动移动控制,以进一步提高测量精度和速度。【主权项】1.一种放大率法测焦距的光具座,包括依次在设置主光轴上的平行光管组件(1 ),透镜夹持器(2),测量显微镜(3),以及与主光轴平行的Y轴一维导轨(5),其特征在于,还包括C⑶接收器(4)本文档来自技高网...

【技术保护点】
一种放大率法测焦距的光具座,包括依次在设置主光轴上的平行光管组件(1),透镜夹持器(2),测量显微镜(3),以及与主光轴平行的Y轴一维导轨(5),其特征在于,还包括CCD接收器(4),以及与主光轴垂直的X轴一维导轨(6),X轴一维导轨(6)上设有滑块(8)、控制滑块(8)移动的丝杠和测量滑块(8)移动距离的光栅尺(7),所述测量显微镜(3)固定安装在所述滑块(8)上;所述光栅尺(7)与光栅尺数显表(9)连接,所述 CCD接收器(4)与图像显示器(10)连接。

【技术特征摘要】

【专利技术属性】
技术研发人员:张斌
申请(专利权)人:茂莱南京仪器有限公司
类型:新型
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1