当前位置: 首页 > 专利查询>浙江大学专利>正文

一种使用电容耦合式非接触电导测量装置的测量方法制造方法及图纸

技术编号:12917416 阅读:155 留言:0更新日期:2016-02-24 23:50
本发明专利技术公开了一种电容耦合式非接触电导测量装置及方法,包括交流激励源、绝缘测量管道、激励电极、检测电极、量程电阻、虚拟电感、差分放大模块、信号处理模块,虚拟电感的一端与量程电阻相连,另一端接地,同时量程电阻两端与差分放大模块相连。本发明专利技术利用虚拟电感代替实际电感,根据串联谐振原理,有效克服耦合电容对测量结果的不利影响。虚拟电感为接地电感,相较于浮置电感,工作稳定性好,电路结构较为简单;相较于实际电感,由于可实现等效电感值的调节,因此降低了对激励源频率的要求。另外,不同于采用电流法的非接触式电导测量方法,本发明专利技术采用电压法,得到被测导电流体等效电导值,为解决管道中导电流体电导测量问题提供了有益借鉴。

【技术实现步骤摘要】
一种使用电容耦合式非接触电导测量装置的测量方法
本专利技术涉及电导检测技术,尤其涉及一种使用电容耦合式非接触电导测量装置的测量方法。
技术介绍
液体的很多特性,例如液体组份变化、浓度波动和化学反应速率变动等,都可以用电导率的变化作为指示。由于电导率具有反映液体物理、化学特性差异的特性,因此液体电导率的测量对科学研究和工业生产都具有重要的意义。现有的电导检测方法主要为接触式电导检测方法,由于电极直接与被测液体接触,容易产生电极极化和电化学腐蚀等问题,因此接触式电导检测方法的应用受到一定的限制。电容耦合式非接触电导检测(C4D)技术是一种新式电导检测技术,该技术可以有效克服接触式电导检测方法存在的问题。然而,其电极和导电液体通过绝缘管壁形成的耦合电容会对测量范围和灵敏度造成不利影响,并且,目前该技术主要的研究与应用范围局限于分析化学领域中毛细管尺度下的离子浓度检测等方向。已有专利(基于虚拟电感的电容耦合式非接触电导测量装置及其方法,专利公开号:CN103941099A)结合串联谐振原理和虚拟电感技术,利用虚拟电感代替实际电感,消除了耦合电容对测量结果造成的不利影响;同时虚拟电感可有效克服实际电感存在的不足。然而,该专利中所涉及的虚拟电感为浮置电感,结构较为复杂,在电导测量过程中具有一定的不稳定性。另外,该专利涉及的电导测量方法采用了电流法,即通过获取检测电路中的电流得到被测导电流体等效电导值,而不是采用电压法。针对以上情况,设计了一种电容耦合式非接触电导测量装置及方法。本专利技术具备已有专利(基于虚拟电感的电容耦合式非接触电导测量装置及其方法,专利公开号:CN103941099A)的技术优点;本专利技术涉及的虚拟电感是接地虚拟电感,相较于已有专利中的虚拟电感,本专利技术涉及的虚拟电感电路得到简化,结构更为简单,性能更为稳定;其次,不同于已有专利采用的电流法,本专利技术采用差分放大模块和信号处理模块获取检测电路中量程电阻两端的电压信号,即采用电压法得到被测导电流体等效电导值,这种利用电压信号的测量方式为解决管道中导电流体电导测量问题提供了新的思路和有益借鉴;另外,本专利技术中涉及的量程电阻的阻值可根据管道内被测导电流体的等效电导值的大小做调整,从而实现了对电导测量范围的调整,这为后续信号处理电路与检测电路的对接提供了便利并且降低了对后续信号处理电路的设计要求。
技术实现思路
本专利技术的目的是克服现有技术的不足,提供一种有效的电容耦合式非接触电导测量装置及方法。具体技术方案如下:一种电容耦合式非接触电导测量装置,包括交流激励源、绝缘测量管道、激励电极、检测电极、量程电阻、虚拟电感、差分放大模块、信号处理模块;在绝缘测量管道外壁安装有激励电极和检测电极,交流激励源与激励电极相连,检测电极、量程电阻、虚拟电感顺次相连,虚拟电感的另一端接地,差分放大模块分别连接量程电阻的两端,差分放大模块与信号处理模块相连。所述的虚拟电感结构为:第一运算放大器的正相输入端为虚拟电感的输入端,第一电阻的一端为虚拟电感的输出端并接地;量程电阻的一端、第三电阻的一端与第一运算放大器的正相输入端相连,第一电阻的一端、第一电容的一端与第一运算放大器的反相输入端相连,第一电容的另一端、第二电阻的一端与第一运算放大器的输出端相连,第二运算放大器的正相输入端与第一运算放大器的正相输入端相短接,第二电阻的另一端、第五电阻的一端与第二运算放大器的反相输入端相连,第二运算放大器的输出端通过第四电阻、第三电阻与第二运算放大器的正相输入端相连,第五电阻的另一端与第二运算放大器的输出端相连,第一电阻的另一端接地。所述虚拟电感的等效电感值L的表达式为其中R1、R2、R3、R4、R5、C1中一个或多个可调,L值通过调节R1、R2、R3、R4、R5、C1中一个或多个实现可调。所述R1、R2、R3、R4、R5、C1中仅R3可调,用于仅通过调节R3实现等效电感值L值的调节。一种使用所述装置的一种电容耦合式非接触电导测量方法,具体方法如下:所述电容耦合式非接触电导检测电路的总阻抗为:当交流激励源的激励电压uin的激励频率f为谐振频率时,检测电路处于谐振状态,此时电容耦合式非接触电导检测电路的等效阻抗的虚部为零,呈现纯阻性,即Z=Rx+R;依据先设定交流激励源的激励电压uin的激励频率f为谐振频率f0,调节虚拟电感等效电感值L,使得电容耦合式非接触电导检测电路处于谐振状态,或者先调节虚拟电感等效电感值L,根据电感值和耦合电容值来设定谐振频率f0的大小,从而使得电容耦合式非接触电导检测电路处于谐振状态,其中,j为复数阻抗的虚部单位,f为交流激励源的激励电压uin的频率,f0为检测电路的谐振频率,Cx1为激励电极与绝缘测量管道内的导电流体通过管壁形成第一耦合电容,Cx2为检测电极与绝缘测量管道内的导电流体通过管壁形成第二耦合电容,L为虚拟电感等效电感值,Rx为绝缘测量管道内两个电极间的导电流体的等效电阻值,R为量程电阻的阻值;当电容耦合式非接触电导检测电路处于谐振状态时,量程电阻两端的电压差u1-u2为其中,为输入的被测导电流体的等效电导值,利用差分放大模块获取量程电阻两端的电压差u1-u2,经信号处理模块对电压信号进行处理和输出,进一步计算后得到导电流体等效电导值。依据若先设定谐振频率f0的大小,则通过调节虚拟电感的等效电感值L,使得检测电路处于谐振状态,此时检测电路的等效阻抗为:Z=Rx+R;若先调节虚拟电感的等效电感值L,此时可根据L、Cx1和Cx2的值来设定激励频率f0的大小,此时检测电路呈谐振状态,等效阻抗为:Z=Rx+R;由于虚拟电感可实现等效电感值的调节,从而相较于实际电感降低了对激励源频率的要求。采用电压法得到被测导电流体等效电导值,即在电容耦合式非接触电导检测电路处于谐振状态时,利用差分放大模块和信号处理模块获取量程电阻两端的电压差信号并进行处理和输出,进一步计算后得到导电流体等效电导值,其中,量程电阻的阻值根据管道内被测导电流体的等效电导值的大小做调整,从而使电导测量范围得到调整。本专利技术与现有技术相比具有有益效果:1)利用虚拟电感代替实际电感,根据串联谐振原理,有效克服由被测导电流体和电极通过绝缘管壁形成的耦合电容对测量结果的不利影响,扩大了测量范围,提高了测量灵敏度;2)本专利技术的检测电路中,只要交流激励源的激励频率f为谐振频率检测电路便可处于谐振状态,此时电容耦合式非接触电导检测电路的等效阻抗的虚部为零,呈现纯阻性,即ZR=Rx+R;依据可以先设定交流激励源1输出的交流电压信号的频率,将该频率作为谐振频率,并在该频率下,调节虚拟电感等效电感值L,使检测电路处于谐振状态,或者先调节虚拟电感等效电感值L,根据电感值和耦合电容值来设定谐振频率,使检测电路处于谐振状态;相较于实际电感,由于虚拟电感可实现等效电感值的调节,因此降低了对激励源频率的要求;3)与已有专利(基于虚拟电感的电容耦合式非接触电导测量装置及其方法,专利公开号:CN103941099A)中的虚拟电感相比,本专利技术涉及的虚拟电感是接地虚拟电感,电路得到简化,结构更为简单,性能更为稳定;4)不同于采用电流法获得导电流体等效电导值的测量方式,本专利技术采用了通过获取检测电路中的电压信号,即采用电压法,得到被测导电流体等效电本文档来自技高网
...
一种使用电容耦合式非接触电导测量装置的测量方法

【技术保护点】
一种电容耦合式非接触电导测量装置,其特征在于包括交流激励源(1)、绝缘测量管道(2)、激励电极(3)、检测电极(4)、量程电阻(5)、虚拟电感(6)、差分放大模块(7)、信号处理模块(8);在绝缘测量管道(2)外壁安装有激励电极(3)和检测电极(4),交流激励源(1)与激励电极(3)相连,检测电极(4)、量程电阻(5)、虚拟电感(6)顺次相连,虚拟电感(6)的另一端接地,差分放大模块(7)分别连接量程电阻(5)的两端,差分放大模块(7)与信号处理模块(8)相连。

【技术特征摘要】
1.一种使用电容耦合式非接触电导测量装置的测量方法,所述测量装置包括交流激励源(1)、绝缘测量管道(2)、激励电极(3)、检测电极(4)、量程电阻(5)、虚拟电感(6)、差分放大模块(7)、信号处理模块(8);在绝缘测量管道(2)外壁安装有激励电极(3)和检测电极(4),交流激励源(1)与激励电极(3)相连,检测电极(4)、量程电阻(5)、虚拟电感(6)顺次相连,虚拟电感(6)的另一端接地,差分放大模块(7)分别连接量程电阻(5)的两端,差分放大模块(7)与信号处理模块(8)相连;所述的虚拟电感(6)结构为:第一运算放大器(A1)的正相输入端为虚拟电感(6)的输入端,第一电阻(R1)的一端为虚拟电感(6)的输出端并接地;量程电阻(5)的一端、第三电阻(R3)的一端与第一运算放大器(A1)的正相输入端相连,第一电阻(R1)的另一端、第一电容(C1)的一端与第一运算放大器(A1)的反相输入端相连,第一电容(C1)的另一端、第二电阻(R2)的一端与第一运算放大器(A1)的输出端相连,第二运算放大器(A2)的正相输入端与第一运算放大器(A1)的正相输入端相短接,第二电阻(R2)的另一端、第五电阻(R5)的一端与第二运算放大器(A2)的反相输入端相连,第二运算放大器(A2)的输出端通过第四电阻(R4)、第三电阻(R3)与第二运算放大器(A2)的正相输入端相连,第五电阻(R5)的另一端与第二运算放大器(A2)的输出端相连,第一电阻(R1)的另一端接地;所述第一电阻(R1)、第二电阻(R2)、第三电阻(R3)、第四电阻(R4)、第五电阻(R5)、第一电容(C1)中仅第三电阻(R3)可调,用于仅通过调节第三电阻(R3)实现等效电感值L值的调节;其特征在于,所述测量方法具体如下:所述电容耦合式非接触电导检测电路的总阻抗为:当交流激励源(1)的激励电压uin的激励频率f为谐振频率时,检测电路处于谐振状态,此时电容耦合式非接触电导检测电路的等效阻抗的虚部为零,呈现纯阻性,即Z=Rx+R;依据先设定交流激励源(1)的激励电压ui...

【专利技术属性】
技术研发人员:吕颖超冀海峰王保良黄志尧李海青
申请(专利权)人:浙江大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1