一种基于流固耦合的4方程模型的改进方法技术

技术编号:11365106 阅读:68 留言:0更新日期:2015-04-29 15:28
本发明专利技术涉及一种基于流固耦合的4方程模型的改进方法,属于流固耦合理论及计算领域。本发明专利技术首先采用对传统的4方程模型的连续性微分方程进行推导,得到改进的流体连续方程;接着对改进的流体连续方程进行分析,得到用于计算耦合水击的基本连续性方程;再对用于计算耦合水击的基本连续性方程进行简化;然后忽略简化后的方程中的流体密度及流体截面面积随时间的变化率、液体速度变化小量,得到连续性方程;再根据得到的连续性方程建立改进的4方程模型;接着对改进的4方程模型变换成矩阵表达形式;最后利用特征线法对矩阵表达形式进行求解,得其特征方程。本发明专利技术能反映管道内同时存在的液体压力波速、管道应力波速、流体流速以及管道自身的振动。

【技术实现步骤摘要】
一种基于流固耦合的4方程模型的改进方法
本专利技术涉及一种基于流固耦合的4方程模型的改进方法,属于流固耦合理论及计算领域。
技术介绍
传统水击理论所用的连续性方程适用面较广,可用于任何恒定流或非恒定流的水力计算,但在发生水击时,管道内并存在液体压力波速、管道应力波速、流体流速,而经典的连续性方程并未能在微分方程中反映这个情况。另外,传统水击计算理论主要重点是研究流体的动力学行为对结构的影响分析,忽略了由于流体对结构运动状态改变而产生的流体运动变化,并且进行了大量的简化处理,这样导致一部分重要的系统信息丢失,不能更好的反应管道系统的实际运动状态。
技术实现思路
本专利技术提供了一种基于流固耦合的4方程模型的改进方法,以用反映管道内同时存在的液体压力波速、管道应力波速、流体流速以及管道自身的振动,所得模型在理论上的更严谨更为精确。本专利技术的技术方案是:一种基于流固耦合的4方程模型的改进方法,首先采用对传统的4方程模型的连续性微分方程进行推导,得到改进的流体连续方程;接着对改进的流体连续方程进行分析,得到用于计算耦合水击的基本连续性方程;再对用于计算耦合水击的基本连续性方程进行简化;然后忽略简化后的方程中的流体密度及流体截面面积随时间的变化率、液体速度变化小量,得到连续性方程;再根据得到的连续性方程建立改进的4方程模型;接着对改进的4方程模型变换成矩阵表达形式;最后利用特征线法对矩阵表达形式进行求解,得其特征方程。所述方法的具体步骤如下:Step1、对传统的4方程模型的连续性微分方程进行推导时,定义得到改进的流体连续方程:式中,λ为改进后4方程中利用特征线法所求得的解,vf为上游端断面的流速,ρf为上游端断面的密度,Af为上游端断面面积,z为z轴坐标轴,t为时间,ds为微元段长度;Step2、对步骤Step1中的改进的流体连续方程进行分析,得到用于计算耦合水击的基本连续性方程:Step2.1、对步骤Step1中的改进的流体连续方程进行变换,再对变换后的方程进一步分析:变换后的方程:进一步分析后的方程:Step2.2、基于非恒定流的连续方程微分形式则得到用于计算耦合水击的基本连续性方程如下:Step3、对用于计算耦合水击的基本连续性方程进行简化,具体为:将用于计算耦合水击的基本连续性方程展开,接着将液体弹性模量Kf和液体截面面积Af随时间的变化率、管道单元体轴向总应变、管道轴向内力对时间的导数方程代入用于计算耦合水击的基本连续性方程;接着忽略代入后的方程中各项的高次微量;再用压力水头代替平均压强p,p=ρfgH+ρfgzsinα-p0;然后忽略压力梯度;最后采用由young推导的简化,得到:式中,g为重力加速度,H为液体压力水头,α为管轴线与水平面的夹角,p0为液体压力,cf为液体压力波速,R为管道内半径,E为管材弹性模量,δ为管壁厚度,μ为管材泊松比,Ap为管材横截面积,uz为z轴方向的位移;Step4、忽略步骤Step3简化后的方程中的流体密度及流体截面面积随时间的变化率、液体速度变化小量,得到连续性方程为:Step5、根据步骤Step4得到的连续性方程建立改进的4方程模型如下:流体动量方程:连续方程为:管道动力方程:管道物理方程:式中,f为液体与管壁之间的磨擦阻尼系数,vr为液体与管道轴向相对流速,σz为管道在z轴方向的应力,cd为管道在z轴方向的结构阻尼系数,ρp为管材密度;Step6、对步骤Step5中改进的4方程模型变换成矩阵表达形式如下:式中,A、B是系数矩阵,F是力向量,表达式如下:Step7、利用特征线法对步骤Step6求解,可得其特征方程为:令求解出相应的特征值如下:式中为液体耦合压力波速,为管道耦合应力波速,λ1、λ2、λ3、λ4为改进后4方程中利用特征线法所求得的解。本专利技术的工作原理是:①、取长度为ds微元段的流体为研究对象,如图1所示的1-1断面为上游端,2-2断面为下游端,假设vf为1-1断面的流速、p为压强、ρf为液体密度、Af为断面面积,则2-2断面相应的流速为压强为密度为断面面积为当下游端阀门关闭产生水击波向上游传播,以波速cf从2-2断面向1-1断面传播,此时需要考虑流体自身的流动,经过dt时段后,流体微元流动的距离设为dΔ=vfdt,那么原流段到达新的位置即1′-1′断面与2′-2′断面之间。其中,s为管道长度。②、由1断面流进与从2断面流出的质量差可求得时段末流段1-2内液体质量为求得时段dt内流段1-2内液体质量的增量为③、根据质量守恒原理,(1)式等于(2)式,得定义整理得由于cf>>vf,并将研究对象移至既定的坐标系中,使得管轴线与坐标z轴重合。即所取的管道长度ds与前面所建立的水击模型的在同一坐标系中,那么连续性方程可简化改为:④、由所述步骤③可知,对传统的4-方程模型的连续性微分方程推导时,定义其中为Korteweg波速,ζ为Korteweg波速修正系数,K为弹性模量,R为管道内半径,E为管材弹性模量,δ为管壁厚度,z为z轴坐标轴。其仅反映了液体压力波和流体流速,对于流体与管道耦合振动的情况还应该有管道应力波的存在,所以,将③步骤推导过程中的将连续性方程推导中的更正为能够反映耦合水击特的管道与流体在纵横两向均耦合的耦合波速,即其中λ为特征波速,即为改进后4方程利用特征线法所求得的解。那么流体连续方程变换为:⑤、对所述步骤④的(5)式进一步分析如下:由于非恒定流的连续方程微分形式则得到用于计算耦合水击的基本连续性方程如下:上式由于加入了λ使得本专利技术所采用的连续性方程能反映横纵向耦合水击特性。⑥、为了从量化上来证明模型的准确性,将所述步骤⑤中(6)展开,得到:整理得到:上式两边同除于λρfAf得到:已知液体弹性模量Kf和液体截面面积Af随时间的变化率如下也可以表达为也可以表达为式中,μ为管材泊松比;为管道轴向内力对时间的导数;将以上两式代入(7)式,可得整理可得:则连续方程变换为如下的形式:管道单元体轴向总应变为:其对时间的导数方程为:式中,ux、uy、uz为管道在x、y、z轴方向的位移管道轴向内力对时间的导数方程为:则式中,F0为作用在管道轴向的初始外力,Ap为管道截面面积;将上两式代入(8)式可得:将所有参数都展开可得:将上式忽略高次微量简化可得:将上式整理并用指标表示:忽略压力梯度,则有接着,用压力水头代替平均压强将p,p=ρfgH+ρfgzsinα-p0,并忽略压力梯度则上式变为:采用由young推导的进行变换,可得:式中,g为重力加速度,H为液体压力水头,α为管轴线与水平面的夹角,p0为液体压力,cf为液体压力波速,uz为z轴方向的位移;⑦、对于4方程而言,由于未知量过多导致方程无法求解,故将所述步骤⑥中(9)式忽略流体密度及液体截面面积随时间的变化率与液体速度变化小量,则连续方程为:⑧、与经典4方程中简化后的流体动量方程、管道运动方程及物理方程构成了改进的轴向4-方程模型如下:流体动量方程:连续方程为:管道动力方程:管道物理方程:式中,f为液体与管壁之间的磨擦阻尼系数,vr为液体与管道轴向相对流速,σz为管道在z轴方向的应力,cd为管道在z轴方向的结构阻尼系数,ρp为液体密度;⑨、所述步骤⑧中改进轴向4方程(10)、(11)、(12)、(13)方程的另本文档来自技高网...
一种基于流固耦合的4方程模型的改进方法

【技术保护点】
一种基于流固耦合的4方程模型的改进方法,其特征在于:首先采用对传统的4方程模型的连续性微分方程进行推导,得到改进的流体连续方程;接着对改进的流体连续方程进行分析,得到用于计算耦合水击的基本连续性方程;再对用于计算耦合水击的基本连续性方程进行简化;然后忽略简化后的方程中的流体密度及流体截面面积随时间的变化率、液体速度变化小量,得到连续性方程;再根据得到的连续性方程建立改进的4方程模型;接着对改进的4方程模型变换成矩阵表达形式;最后利用特征线法对矩阵表达形式进行求解,得其特征方程。

【技术特征摘要】
1.一种基于流固耦合的4方程模型的改进方法,其特征在于:首先采用对传统的4方程模型的连续性微分方程进行推导,得到改进的流体连续方程;接着对改进的流体连续方程进行分析,得到用于计算耦合水击的基本连续性方程;再对用于计算耦合水击的基本连续性方程进行简化;然后忽略简化后的方程中的流体密度及流体截面面积随时间的变化率、液体速度变化小量,得到连续性方程;再根据得到的连续性方程建立改进的4方程模型;接着对改进的4方程模型变换成矩阵表达形式;最后利用特征线法对矩阵表达形式进行求解,得其特征方程;所述方法的具体步骤如下:Step1、对传统的4方程模型的连续性微分方程进行推导时,定义得到改进的流体连续方程:式中,λ为改进后4方程中利用特征线法所求得的解,vf为上游端断面的流速,ρf为上游端断面的密度,Af为上游端断面面积,z为z轴坐标轴,t为时间,ds为微元段长度;Step2、对步骤Step1中的改进的流体连续方程进行分析,得到用于计算耦合水击的基本连续性方程:Step2.1、对步骤Step1中的改进的流体连续方程进行变换,再对变换后的方程进一步分析:变换后的方程:进一步分析后的方程:Step2.2、基于非恒定流的连续方程微分形式则得到用于计算耦合水击的基本连续性方程如下:Step3、对用于计算耦合水击的基本连续性方程进行简化,具体为:将用于计算耦合水击的基本连续性方程展开,接着将液体弹性模量Kf和液体截面面积Af随时间的变化率、管道单元体轴向总应变、管道轴向内力对时间的导数方程代入用于计算耦合水击的基本连续性方程;接着忽略代入后的方程中各项的高次微量;再用压力水头代替平均压强p,p=ρ...

【专利技术属性】
技术研发人员:陈婷苏志敏朱建兵皇甫飞华冯赛
申请(专利权)人:昆明理工大学
类型:发明
国别省市:云南;53

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1