霍尔条微器件制造技术

技术编号:11116733 阅读:105 留言:0更新日期:2015-03-06 13:57
本发明专利技术公开了一种霍尔条微器件。该霍尔条微器件包括:衬底;凸台,位于衬底上并具有预定的霍尔条形状,并具有平整的上表面;以及薄膜层,由拓扑绝缘体材料在凸台的表面上外延生长而成,且具有与凸台相对应的形状。本发明专利技术在制备三维拓扑绝缘体薄膜器件时,惊奇地发现,掺杂磁性元素Cr后,(BixSb1-x)2Te3材料变成了铁磁性的绝缘体。采用掺Cr的(BixSb1-x)2Te3材料作为薄膜层制备来三维拓扑绝缘体薄膜器件,拓扑绝缘体具有边态,在极低的温度条件下就可以测量量子反常霍尔效应,即在不加外加磁场的情况下观察到量子霍尔效应,这一效应在计量学,未来的电子器件应用中将会有巨大的应用前景。

【技术实现步骤摘要】
霍尔条微器件
本专利技术涉及薄膜微器件加工
,尤其是涉及一种霍尔条微器件。
技术介绍
拓扑绝缘体是一种新的量子物态。传统上固体材料可以按照其导电性质分为绝缘体和导体,其中绝缘体材料在其费米能级处存在着有限大小的能隙,因而没有自由载流子。金属材料在费米能级处存在着有限的电子态密度,进而拥有自由载流子。而拓扑绝缘体是一类非常特殊的绝缘体,从理论上分析,这类材料的体内的能带结构是典型的绝缘体类型,在费米能级处存在着能隙,然而在该类材料的表面则总是存在着穿越能隙的狄拉克型的电子态,因而导致其表面总是金属性的。拓扑绝缘体这一特殊的电子结构,是由其能带结构的特殊拓扑性质所决定的。 拓扑绝缘体因其独特的电子结构和性质成为近年来凝聚态物理研究的热点领域。三维拓扑绝缘体具有绝缘型的体能带和受时间反演对称性保护的金属型表面态。这种表面态在动量空间具有狄拉克型的色散关系,并且在狄拉克点之外的地方是自旋非简并的。这种独特的拓扑表面态有可能导致多种新奇的量子现象,如表面量子霍尔效应、激子凝聚现象、量子反常霍尔效应等,三维拓扑绝缘体已经在很多材料中被预言或发现。 Bi2Se3家族的化合物(Bi2Se3, Bi2Te3, Sb2Te3)因为其简单的表面态结构、较大的体能隙、较易制备等优点成为目前研究最多的一类三维拓扑绝缘体材料。人们已通过分子束外延法(MBE)在多种衬底上生长出高质量的Bi2Se3家族的拓扑绝缘体薄膜,并在其中观测到了一些新奇的量子现象和物理性质。但是采用Bi2Se3家族的化合物作为拓扑绝缘体薄膜,制备得到的霍尔条微器件无法测量量子反常霍尔效应。 因此,目前迫切需要出现一种新的霍尔条微器件,以解决现有技术中所存在的上述问题。
技术实现思路
本专利技术的目的旨在提供一种霍尔条微器件,可以用来测量量子化反常霍尔效应。 应用本专利技术的技术方案,提供了一种霍尔条微器件,包括:衬底;凸台,位于衬底上并具有预定的霍尔条形状,并具有平整的上表面;以及薄膜层,由拓扑绝缘体材料在凸台的表面上外延生长而成,且具有与凸台相对应的形状。 进一步地,凸台与衬底为一体结构。 进一步地,凸台是对衬底刻蚀形成。 进一步地,凸台的厚度为10nm?500nm。 进一步地,从凸台的上表面至衬底的方向上,凸台的横截面大小一致。 进一步地,在从凸台的上表面至衬底的方向上,凸台的横截面渐缩。 进一步地,凸台的纵向截面为倒梯形。 进一步地,薄膜层的厚度为5nm?10nm。 进一步地,衬底的材料为SrTi03。 进一步地,拓扑绝缘体材料为掺铬的秘铺締合金。 应用本专利技术的技术方案,在制备三维拓扑绝缘体薄膜器件时, 申请人:惊奇地发现,掺杂磁性元素Cr后,(BixSbh)2Te3MW变成了铁磁性的绝缘体。采用掺Cr的(BixSb1J2Te3材料作为薄膜层来制备三维拓扑绝缘体薄膜器件,拓扑绝缘体具有边态,在极低的温度条件下就可以测量量子反常霍尔效应。所谓的量子反常霍尔效应,即在不加外加磁场的情况下观察到量子霍尔效应,这一效应在计量学,未来的电子器件应用中将会有巨大的应用前旦 -5^ O 根据下文结合附图对本专利技术具体实施例的详细描述,本领域技术人员将会更加明了本专利技术的上述以及其他目的、优点和特征。 【附图说明】 后文将参照附图以示例性而非限制性的方式详细描述本专利技术的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中: 图1为本专利技术一种实施例中在SrT13(STO)衬底上通过预刻蚀获得Hall bar形状凸平台、并利用MBE方法制备出拓扑绝缘体薄膜的Hall bar器件的原理示意图; 图2为本专利技术一种典型实施例制备的霍尔条微器件的结构示意图; 图3为本专利技术一种典型实施例中对STO衬底经过紫外光刻后的光学显微镜照片;以及 图4-图7为本专利技术的其它典型实施例中的霍尔条微器件的结构示意图。 【具体实施方式】 如图2所示,本专利技术提供了一种霍尔条(Hall bar)微器件,包括衬底10、凸台20和薄膜层30。其中,凸台20位于衬底10上并具有预定的霍尔条形状,凸台20具有平整的上表面21,以用于拓扑绝缘体材料在该上表面21上外延生长。薄膜层30由拓扑绝缘体材料在凸台20的表面21上生长而成,且具有与凸台20相对应的形状。优选地,拓扑绝缘体材料为掺铬的铋锑碲合金。进一步优选地,拓扑绝缘体材料为掺Cr的(BixSbh)2Te3材料,O < X < 10 霍尔条微器件是指用于测量霍尔效应的固态电子器件。E.H.霍尔于1879年发现:一块矩形导体或半导体材料在磁感应强度为Bz的磁场中,在垂直于磁场的方向有电流Ix通过器件,在既垂直于磁场Bz、又垂直于电流Ix的方向将产生电场Ey,这就是霍尔效应。用霍尔条微器件测量磁场强度的特点是:器件很小很扁(可以放在窄缝中),具有较高的准确度、灵敏度和稳定性,还有较宽的工作温度范围。 其中,Cu1-ZuChang 等人在文献 Experimental Observat1n of the QuantumAnomalous Hall Effect in a Magnetic Topological Insulator 中已经公开了惨 Cr 的(BixSVx)2Tej^iK专利技术人惊奇地发现,掺杂磁性元素Cr后,(BixSb1J2Te3材料成为了铁磁性的绝缘体。拓扑绝缘体具有边态,在Cr磁性离子掺杂的(BixSlvx)2Te3M料的拓扑绝缘体中存在着特殊的V.Vleck铁磁交换机制,能形成稳定的铁磁绝缘体,是实现量子反常霍尔效应的最佳体系。因此,本专利技术采用掺Cr的(BixSbh)2Te3M料作为薄膜层制备的霍尔条微器件(也称为拓扑绝缘体薄膜器件),在极低的温度条件下就可以测量量子反常霍尔效应。 量子霍尔效应的产生需要非常强的磁场,“相当于外加10个计算机大的磁铁,这不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。”而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。因此,本专利技术制备的霍尔条微器件,使得量子反常霍尔效应在零磁场的条件下应用量子霍尔效应成为可能,并且这些效应可能在未来电子器件中发挥特殊的作用,可用于制备低能耗的高速电子器件。 拓扑绝缘体有很多独特的输运性质,要在微米尺度甚至亚微米尺度的结构中才能观测到。例如,拓扑绝缘体的表面态具有电子弹性散射的背散射缺失的特性。本专利技术在制备霍尔条微器件时,可以采用现有的制备方法。现有技术中为了将一个外延薄膜加工成微器件,一般需要对其进行紫外光刻或电子束刻蚀。而微器件制作工艺需要使材料表面接触各种化学物质,如光刻胶、显影液以及各种有机溶剂等。尽管由于拓扑保护,这些化学物质不会破坏拓扑绝缘体的表面态,但与这些物质的接触却有可能显著改变载流子浓度和迁移率,从而影响各种量子效应的观测。 为了解决上述问题,本专利技术的霍尔条微器件是可以通过在不影响拓扑绝缘体外延薄膜表面环境的情况下对其进行微加工获得,以便实现各种量子现象。在本专利技术的一种典型实施例中,以STO衬底10本文档来自技高网
...

【技术保护点】
一种霍尔条微器件,包括:衬底(10);凸台(20),位于所述衬底(10)上并具有预定的霍尔条形状,并具有平整的上表面(21);以及薄膜层(30),由拓扑绝缘体材料在所述凸台(20)的所述表面(21)上外延生长而成,且具有与所述凸台(20)相对应的形状。

【技术特征摘要】
2014.09.25 CN 201420556844X1.一种霍尔条微器件,包括: 衬底(10); 凸台(20),位于所述衬底(10)上并具有预定的霍尔条形状,并具有平整的上表面(21);以及 薄膜层(30),由拓扑绝缘体材料在所述凸台(20)的所述表面(21)上外延生长而成,且具有与所述凸台(20)相对应的形状。2.根据权利要求1所述的霍尔条微器件,其特征在于,所述凸台(20)与所述衬底(10)为一体结构。3.根据权利要求1-2中任一项所述的霍尔条微器件,其特征在于,所述凸台(20)是对所述衬底(10)刻蚀形成。4.根据权利要求1-3中任一项所述的霍尔条微器件,其特征在于,所述凸台(20)的厚度为 lOOnm ?500nm。5.根据权...

【专利技术属性】
技术研发人员:李康欧云波何珂马旭村
申请(专利权)人:中国科学院物理研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1