基于局部特征及全局特征结合的人脸识别方法技术

技术编号:10973847 阅读:160 留言:0更新日期:2015-01-30 05:40
本发明专利技术公开一种基于局部特征及全局特征结合的人脸识别方法,包括步骤为:第一步、通过提取已有的人脸数据库中的人脸对训练集进行训练;第二步、提取输入人脸的灰度图像;第三步、提取输入人脸的主成分特征并进行识别;第四步、提取输入人脸的局部二值特征并进行识别;第五步、对输入人脸的主成分特征和输入人脸的局部二值特征进行加权;第六步、寻找在已有的人脸训练集中与输入人脸匹配的人脸并输出。本发明专利技术方法提高了人脸识别的识别率,同时提供了一种结合两种算法的方法,应用上有十分广泛的前景。

【技术实现步骤摘要】

本专利技术涉及的本专利技术涉及的是一种对人脸图像识别的方法,具体是一种基于主元 分析(PCA)全局特征与局部二值模式(LBP)特征的加权融合的人脸识别方法。
技术介绍
1888年,Calton在《Nature》上发表了一篇关于人类鉴别人脸原理的论文,由此提 出了人脸识别技术。在随后的80年的时间中,技术发展的方向主要在于对于人脸的图片 进行灰度、亮度的处理后,以人的肉眼进行人脸识别。至今,人脸识别技术被广泛应用于安 保、视频标记、图片数据库检索、一般身份验证和智能人机交互技术等方面。同时,随着网络 时代的到来,以互联网为基础的大范围人脸识别也成为了新的研究课题和应用方向。 经对现有文献检索发现,中国专利文献号为:CN102156887A,题为:一种基于局部 特征学习的人脸识别方法,该技术采用的是局部二值模式(LBP)以及局部三值模式(LTP) 算子两种方法对训练集中的人脸特征进行分类,然后再对测试集中的人脸特征进行匹配识 另IJ。该专利技术主要是运用局部特征进行人脸识别。现有的人脸识别也多是采用单种方法来进 行,并不断尝试单种方法的准确程度。这方面国本文档来自技高网...
<a href="http://www.xjishu.com/zhuanli/55/201410608227.html" title="基于局部特征及全局特征结合的人脸识别方法原文来自X技术">基于局部特征及全局特征结合的人脸识别方法</a>

【技术保护点】
基于局部特征及全局特征结合的人脸识别方法,其特征在于,包括以下步骤:第一步、通过提取已有的人脸数据库中的人脸对训练集进行训练;第二步、提取输入人脸的灰度图像;第三步、提取输入人脸的主成分特征并进行识别;第四步、提取输入人脸的局部二值特征并进行识别;第五步、对输入人脸的主成分特征和输入人脸的局部二值特征进行加权;第六步、寻找在已有的人脸训练集中与输入人脸匹配的人脸并输出。

【技术特征摘要】
1. 基于局部特征及全局特征结合的人脸识别方法,其特征在于,包括以下步骤: 第一步、通过提取已有的人脸数据库中的人脸对训练集进行训练; 第二步、提取输入人脸的灰度图像; 第三步、提取输入人脸的主成分特征并进行识别; 第四步、提取输入人脸的局部二值特征并进行识别; 第五步、对输入人脸的主成分特征和输入人脸的局部二值特征进行加权; 第六步、寻找在已有的人脸训练集中与输入人脸匹配的人脸并输出。2. 根据权利要求1所述的基于局部特征及全局特征结合的人脸识别方法,其特征在 于,第一步包括: a) 提取训练集中人脸的灰度图像形成灰度矩阵; b) 计算得到灰度矩阵各条向量的平均值; c) 计算得到灰度矩阵各条向量与平均值的差值并形成差值矩阵; d) 求得差值矩阵的较大的若干个奇异值; e) 根据奇异值分解定理求取特征脸空间; f) 将差值矩阵投影到特征脸空间; g) 提取测试集中人脸的灰度图像,并计算局部二值特征,以直方图形式存入返回矩阵。3. 根据权利要求2所述的基于局部特征及全局特征结合的人脸识别方法,其特征在 于,第三步包括: a) 提取测试集中人脸的灰度图像形成灰度矩阵; b) 计算得到灰度矩阵各条向量的平均值; c) 计算得到灰度矩阵各条向量与平均值的差值并形成差值矩阵; d) 计算得到输入图像的向量与平均值的差值并形成差值...

【专利技术属性】
技术研发人员:孙锬锋蒋兴浩贾欣励李博马力天
申请(专利权)人:上海交通大学
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1