具有滞回特性的下垂-倒下垂型微电网逆变器电源制造技术

技术编号:10738142 阅读:132 留言:0更新日期:2014-12-10 13:08
本发明专利技术公开了具有滞回特性的下垂-PQ型微电网逆变器电源,包括分布式一次能源、检测模块、控制模块、驱动模块和逆变器换流桥;所述检测模块包括采样单元和输入信号处理单元,所述控制模块根据检测模块传送过来系统有功和无功功率的信息,与电源事先设置的功率极限值进行比较,从而产生作用于驱动模块的控制信号,所述控制模块的控制方法为下垂-倒下垂控制,且控制模块设有四个门槛值,所述驱动模块包括PWM生成电路和驱动放大电路,所述逆变器换流桥用于分布式一次能源和微电网的连接,及其之间的电能交换。本发明专利技术增大功率调节范围,提供稳定的电压和频率,可使系统可靠稳定的运行,并使其具有较好的抗扰动性能。

【技术实现步骤摘要】
【专利摘要】本专利技术公开了具有滞回特性的下垂-PQ型微电网逆变器电源,包括分布式一次能源、检测模块、控制模块、驱动模块和逆变器换流桥;所述检测模块包括采样单元和输入信号处理单元,所述控制模块根据检测模块传送过来系统有功和无功功率的信息,与电源事先设置的功率极限值进行比较,从而产生作用于驱动模块的控制信号,所述控制模块的控制方法为下垂-倒下垂控制,且控制模块设有四个门槛值,所述驱动模块包括PWM生成电路和驱动放大电路,所述逆变器换流桥用于分布式一次能源和微电网的连接,及其之间的电能交换。本专利技术增大功率调节范围,提供稳定的电压和频率,可使系统可靠稳定的运行,并使其具有较好的抗扰动性能。【专利说明】具有滞回特性的下垂-倒下垂型微电网逆变器电源
本专利技术涉及电力电子装置及其控制领域,涉及一种具有滞回特性的下垂-倒下垂型微电网逆变器电源。
技术介绍
随着电力需求的不断增长,常规电网在过去数十年里快速发展。然而由于其成本高、运行难度大,以及燃料短缺、环境污染的日益加重,促进了环保、灵活、以可再生能源为主的分布式发电技术的发展。为了充分发挥分布式发电的优点并解决大电网与其之间的矛盾,一般将分布式发电系统互联形成以微电网的形式运行。然而随着微电网的接入,出现了一些新的问题,主要表现在微电网在孤岛运行模式下采用何种控制方式才能维持整个系统的稳定运行。当微电网与大电网并网运行时,可由大电网提供运行参考频率和电压。而微电网在孤网状态时,需要对网内各个微电源进行有效的控制协调,以维持整个系统能够稳定运行,保证系统的电压及频率在合理的范围内。 目前常用的一种孤网运行方式是以一个采用下垂控制的电源为主电源,提供频率和电压参考。其静态输出特性曲线如图1所示,P、f、Q、V分别为有功功率、频率、无功功率、电压,P1^ f\、Qp V1分别为运行点A的有功功率、频率、无功功率、电压,P2> f2、Q2> V2分别为运行点B的有功功率、频率、无功功率、电压,f0> V0分别为空载时换流器输出电压频率和幅值,m和η分别为频率和电压下垂系数,图1 (a)为(有功-频率静态特性曲线图,I (b)为无功-电压静态特性曲线。当系统的负荷有功功率和无功功率分别增加时,逆变器电源就会调整其控制器并使其运行点由A点向B点移动,直至达到系统的功率平衡。其它的电源都运行在倒下垂方式下,其静态输出特性曲线如图2所示,图2 (a)为有功-频率静态特性曲线图2 (b)为无功-电压静态特性曲线,P3、f3、Q3、V3分别为运行点C的有功功率、频率、无功功率、电压,P4、f4、Q4、V4分别为运行点D的有功功率、频率、无功功率、电压,m/k和n/k分别为频率和电压倒下垂系数。当系统的负荷有功功率和无功功率分别增加时,逆变器电源就会调整其控制器并使其运行点由C点向D点移动,直至达到系统的功率平衡。采用下垂控制方式的微电源虽然可以在其可调容量范围内维持系统的电压幅值及频率不变,但是一旦系统内需要大量的功率交换,超出其可调容量范围,该微电源就不能继续维持系统的稳定运行。 一种可行的解决方法是采用下垂控制和倒下垂控制的交替方式,其静态输出特性如图3所示,其中,图3 (a)为有功-频率静态特性曲线,3 (b)为无功-电压静态特性曲线,Pmin、P_分别为电源输出有功功率最小值、最大值,Qmin、Qmax分别为电源输出无功功率最小值、最大值,fmin、fmax分别为电源输出频率最小值、最大值,Vmin, Vmax分别为电源输出电压最小值、最大值。Pn、Pm分别为下垂控制方式下电源输出有功功率最小值、最大值,Qn、Qm分别为下垂控制方式下电源输出无功功率最小值、最大值,fn、fm分别为下垂控制方式下电源输出频率最小值、最大值,Vn、Vm分别为下垂控制方式下电源输出电压最小值、最大值。当孤网运行时,微电网中有一个电源运行于下垂方式下,为系统提供电压和频率支持;而其它的电源运行于倒下垂方式下。当下垂控制的电源可调容量越限时转为倒下垂方式,而由某一个其它的电源提供电压和频率支持。但是,这种切换会造成较大的频率或电压扰动,运行灵活性不足,控制器容易误触发。因此,可进一步引入滞回特性的控制方式及相应组网方式。
技术实现思路
为了克服现有的技术的不足,本专利技术提供一种具有滞回特性的下垂-倒下垂型微电网逆变器电源。 本专利技术技术方案如下所述:具有滞回特性的下垂-倒下垂型微电网逆变器电源,其特征在于,包括分布式一次能源、检测模块、控制模块、驱动模块和逆变器换流桥;所述检测模块包括采样单元和输入信号处理单元,采样单元采集当前系统的电流、电压,将其实时采样信号传输到输入信号处理单元,输入信号处理单元进行实时计算,得出系统的有功和无功功率,将信息传递给控制模块;所述控制模块根据检测模块传送过来系统有功和无功功率的信息,与电源事先设置的功率极限值进行比较,从而产生作用于驱动模块的控制信号;所述驱动模块包括PWM生成电路和驱动放大电路,PWM生成电路将控制信号调制成PWM控制脉冲,驱动放大电路将PWM控制脉冲放大后驱动逆变器换流桥;所述逆变器换流桥用于分布式一次能源和微电网的连接,及其之间的电能交换;所述控制模块的控制方法为下垂-倒下垂控制,且所述控制模块设有四个门槛值,从大到小分别为第一门槛值、第二门槛值、第三门槛值和第四门槛值,若电源工作在下垂控制方式下,只有当频率或电压小于第一门槛值时,或当输入大于第四门槛值时,下垂控制方式才会切换为倒下垂控制方式;若电源工作在倒下垂控制方式下,只有当频率或电压小于第二门槛值时,或当输入大于第三门槛值时,倒下垂控制方式才会切换为下垂控制方式。 根据上述结构的本专利技术,其有益效果在于,本专利技术不但可以增大功率调节范围,每个电源可根据其设置的参考频率及其可输出的有功功率的范围来投入或退出主控模式。另夕卜,由于引入了滞回输出特性的下垂-倒下垂控制方法及其组网方式,为系统提供稳定的电压和频率,维持系统可靠稳定地运行,避免控制器频繁切换,使系统具有较好的抗扰动性能。各个逆变器电源之间可以按照预先设定的阈值依次切换,减少控制器误动或拒动带来的影响,增大容错能力,更好地维持系统稳定运行。随着我国微电网的快速发展,特别是对微电网运行的柔性和可靠性,微电源控制以及数量众多的微电源间的协调配合要求高的区域,将具有重要的理论和工程价值。 【专利附图】【附图说明】 图1为现有下垂控制方法的电源静态输出特性曲线;图2为现有倒下垂控制方法的电源静态输出特性曲线;图3为现有下垂-倒下垂控制方法的电源静态输出特性曲线;图4为本专利技术结构示意图;图5为本专利技术组成系统的实施例一的结构示意图;图6为本专利技术的有功-频率静态特性示意图; 图7为本专利技术的无功-电压静态特性示意图。 【具体实施方式】 下面结合附图以及实施方式对本专利技术进行进一步的描述:如图4所示,本专利技术所涉及的系统结构包括分布式一次能源、检测模块、控制模块、驱动模块和逆变器换流桥。检测模块获得采样信号并通过计算得到微电网系统的有功和无功功率;控制模块对检测模块传递来的有功和无功功率以及设定的参考变量进行逻辑判断,产生作用于驱动模块的控制信号;驱动模块将控制信号调制成PWM控制脉冲本文档来自技高网
...

【技术保护点】
具有滞回特性的下垂‑倒下垂型微电网逆变器电源,其特征在于,包括分布式一次能源、检测模块、控制模块、驱动模块和逆变器换流桥;所述检测模块包括采样单元和输入信号处理单元,采样单元采集当前系统的电流、电压,将其实时采样信号传输到输入信号处理单元,输入信号处理单元进行实时计算,得出系统的有功和无功功率,将信息传递给控制模块;所述控制模块根据检测模块传送过来系统有功和无功功率的信息,与电源事先设置的功率极限值进行比较,从而产生作用于驱动模块的控制信号;所述驱动模块包括PWM生成电路和驱动放大电路,PWM生成电路将控制信号调制成PWM控制脉冲,驱动放大电路将PWM控制脉冲放大后驱动逆变器换流桥;所述逆变器换流桥用于分布式一次能源和微电网的连接,及其之间的电能交换;所述控制模块的控制方法为下垂‑倒下垂控制,且所述控制模块设有四个门槛值,从大到小分别为第一门槛值、第二门槛值、第三门槛值和第四门槛值,若电源工作在下垂控制方式下,只有当频率或电压小于第一门槛值时,或当输入大于第四门槛值时,下垂控制方式才会切换为倒下垂控制方式;若电源工作在倒下垂控制方式下,只有当频率或电压小于第二门槛值时,或当输入大于第三门槛值时,倒下垂控制方式才会切换为下垂控制方式。...

【技术特征摘要】

【专利技术属性】
技术研发人员:黄小耘雷金勇黄红远郭晓斌彭飞进许爱东李响申展
申请(专利权)人:广东电网公司佛山供电局南方电网科学研究院有限责任公司
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1