基于非支配邻域免疫算法的多目标模糊聚类图像变化检测方法技术

技术编号:10659600 阅读:173 留言:0更新日期:2014-11-19 19:22
本发明专利技术公开一种基于非支配邻域免疫算法的多目标模糊聚类图像变化检测方法,解决现有聚类算法无法平衡细节和噪声的问题。其实现步骤为:设置迭代次数等运行参数;基于中心编码,随机产生初始种群;以像素点间的欧式距离的相似性度量和空间点与其邻域间的欧式距离的相似性度量同时作为优化目标;更新隶属度;根据优化目标进行优势抗体群更新;非支配邻域选择;对抗体群进行免疫操作,必要时循环;判断是否达到终止条件,达到则由隶属度得到聚类结果,输出分割图像。本发明专利技术通过将多目标方法引入包含空间信息的聚类算法,解决了图像分割中细节和噪声难以平衡的问题,可用于图像分割、目标识别等技术领域中。

【技术实现步骤摘要】
基于非支配邻域免疫算法的多目标模糊聚类图像变化检测方法
本专利技术属于图像处理
,涉及多目标进化算法在图像聚类分割上的应用,可用于图像变化检测、图像分割、图像分类、模式识别、目标跟踪等
中。
技术介绍
遥感图像变化检测是通过对同一地区不同时期的两幅或多幅遥感图像的比较分析,以及图像之间的差异得到所需的地物变化信息。目前SAR图像变化检测算法的研究方法大体分为两种:第一是分类后比较法,第二是差异图分类法。差异图分类法是目前公认的较为有效的方法,即先构造一幅差异图像(DI),然后对这幅差异图像进行处理。在第二步中差异图的分析方法主要是对差异图中变化和非变化区域的准确分类,这种二元分类的变化检测问题,往往可将其划分为图像分割方向的一类重要应用。在众多的分割算法中,基于聚类分析的图像分割算法是图像分割领域中一类极其重要和应用相当广泛的算法。聚类是对目标或模式以一定的要求和规律进行区分和分类的过程。模糊C-均值聚类(FuzzyC-Means)算法作为一种常见的基于目标函数最小化的聚类算法。目前已被广泛应用于图像的自动分割。但是经典的FCM本身也存在一定的缺陷:一方面,传统FCM是一本文档来自技高网...
基于非支配邻域免疫算法的多目标模糊聚类图像变化检测方法

【技术保护点】
一种基于非支配邻域免疫算法的多目标模糊聚类图像变化检测方法,其特征在于将非支配邻域免疫算法NNIA应用到包含邻域信息的模糊聚类方法,得到一种多目标聚类分割算法,在噪声免疫和图像细节保留上达到了很好的平衡,本方法实现包括如下步骤:(1)设置需要设置的参数,所述需要设置的参数包括:终止条件迭代次数T,最大代数Gmax及抗体种群大小Na,变异概率Pm,聚类类别数K,模糊隶属度的加权指数m,t=0;(2)读取两时相图像,生成差异图像作为待处理图像;(3)将差异图像转化为向量形式,作为聚类数据;(4)采用实数编码,随机产生初始抗体种群,种群表示采用基于中心的表示方法,种群大小为Na×K,每个抗体表示一个...

【技术特征摘要】
1.一种基于非支配邻域免疫算法的多目标模糊聚类图像变化检测方法,其特征在于将非支配邻域免疫算法NNIA应用到包含邻域信息的模糊聚类方法,得到一种多目标聚类分割算法,在噪声免疫和图像细节保留上达到了很好的平衡,本方法实现包括如下步骤:(1)设置需要设置的参数,所述需要设置的参数包括:终止条件迭代次数T,最大代数Gmax及抗体种群大小Na,变异概率Pm,聚类类别数K,模糊隶属度的加权指数m,t=0;(2)读取两时相图像,生成差异图像作为待处理图像;(3)将差异图像转化为向量形式,作为聚类数据;(4)采用实数编码,随机产生初始抗体种群,种群表示采用基于中心的表示方法,种群大小为Na×K,每个抗体表示一个聚类中心的组合;(5)计算像素点和聚类中心间的欧式距离的相似性度量,邻域像素与中心点像素之间的灰度差和欧式空间距离加权同时作为优化目标;(6)按照各自的优化目标和聚类中心进行隶属度更新;(7)根据优化目标进行优势抗体群更新,用非支配排序方法对临时种群中的个体进行排序操作获得个体临时的支配面值,从中选择支配面值小的个体;(8)非支配邻域选择,选择拥挤距离大的抗体组成活性抗体;(9)对抗体群进行克隆、重组超变异操作,得到抗体群转到(5);(10)判断是否达到终止条件,未达到则t+1,否则通过隶属度得到聚类结果,分割差异图,得到关于变化类和非变化类的二值图像,将所得一系列结果输出,由用户从分割结果中选择保留更多细节还是去除更多噪声;其中步骤(5)所述的计算像素点和聚类中心间的欧式距离,邻域像素与中心点像素之间的灰度差和欧式空间距离加权,作为多目标聚类的优化的目标,以下目标函数均为计算各自最小值;5a)对于每一个抗体,即对每一组聚类中心,计算每一个像素点xi和到所有中心点vk的欧式距离和,目的保持图像细节,达到聚类的紧凑性目标,目标函数如下:其中,X={x1,x2,…xN}为样本数据集,N表示像素点数目,c为聚类的类别数即K,是第k...

【专利技术属性】
技术研发人员:公茂果马文萍姜琼芝焦李成马晶晶李豪刘嘉王桥薛长琪
申请(专利权)人:西安电子科技大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1