基于光电耦合器的线性电压检测方法技术

技术编号:10451588 阅读:152 留言:0更新日期:2014-09-18 16:27
本发明专利技术基于光电耦合器的线性电压检测方法用以扩展电压传感器的工作频率为目标,采用光电耦合器作为隔离传输器件,配合运算放大器构成双闭环反馈网络,实现有源非线性纠正和相位补偿,使得其在传输信号高频段具有良好的线性度和较小的相位失真,工作频率能够达到50kHz。可以做成电压传感模块作为电流型电压传感器使用,检测高低频正弦交流电压值。

【技术实现步骤摘要】
—.
[0001 ] 本专利技术涉及的内容属于电参数测量
,是通过光电耦合器对直流电流或交流电流值进行隔离式测量,作为一种电流传感器使用,与电气控制设备的生产相关。 二.
技术介绍
在电气控制设备的生产中经常要用到电流、电压传感器做隔离式检测。目前,需要进行电路隔离式检测电压的方式主要有二种:一是采用铁磁性变压器结构,直接利用变压比的方式实现电压转换;二是电流型电压互感器,采用限流电阻将电压转换为电流,再利用电流互感的方式输出电流,然后通过电阻转换成电压。变压器结构的电压互感器的感知准确度比较高,线性度好,相位失真小,但体积较大,普通的电压互感器与拳头的体积相仿,高电压环境下体积更大,显得很笨重,在有些控制电路中不便使用。电流型电压互感器体积较小,对于低频率电压的检测比较理想,但对于高频率电压的检测,存在严重的相位失真问题。如ZMPT101B工作频率高端只能达到5kHz左右的电压测量,在5kHz下相位已经滞后7.2° ;在1kHz下相位滞后21.6°,并且其幅度也下降了 7.5%。所以,虽然电流型电压互感器的体积小巧,对于高频或者有严格相位要求的测量中,比如对于数十千赫兹的高频电功率测量等不能被采用。 需要进行电路隔离的电压、电流耦合方式除了变压器外,还可以采用光电耦合器、霍尔元件等,其中霍尔元件被应用在大电流的检测,光电耦合器在传递电压信号中应用较广。光电耦合器具有体积小、功耗低、电隔离性能好、抗电磁干扰能力强等许多优点,对于被测电路与测量电路之间需要隔离环境,尤其是高电压网络的测量,光电耦合器的优点可以得到充分体现。但光电耦合器是非线性器件,某些被称为线性光电耦合器的也有明显的非线特性,采用光电耦合器直接检测电压存在相位滞后和波形失真,无论是从全波形耦合电路或者是从整流式耦合电路中都可以反映出这两者变化情况,如附图5所示。因此,对于相位和谐波失真要求比较严格的测量环境中不能直接使用光电耦合器来测量。 本专利技术针对于普通电压传感器高频特性不良的情况,以光电耦合器为基础开发出频率更高的电压传感器,可用于逆变电源、高频加热器等内部电路高频电压的线性检测与传感,构成准确度更高反馈系统。因此,本专利技术所涉及的方法会有一定的应用前景。 三.
技术实现思路
本专利技术,能够将电压传感器的工作频率扩展到更高频率范围,从技术层面上看,具有以下内容特征: 采用适合高频率工作的运算放大器,成双的光电耦合集成器等,通过其中一对光电耦合器构成深度电流负反馈,通过电阻电容器件组成深度电压负反馈,整体组成具有双闭环结构的深度负反馈电压-电流变换电路,由此方法消除光电耦合器带来的非线性失真,由另一对电流传输特性完全相同的光电I禹合器以电流形式隔离输出;在运算放大器输出电流支路中设置比例微分电路,在运算放大器的输出端与反相端之间再并联阻容比例微分电路,由此方法前移光电耦合器驱动电流,弥补高频段的信号传输相位滞后问题,如附图1所示;在运算放大器的工作状态设置上,预先给运算放大器一个静态电流,并且将运算放大器的电压增益设置成小于1,运算放大器输入端口电位设置在运算放大器供电电压的中间值附近,以获得尽量大的动态范围。 实现相位纠正的线性电压传输电路结构如附图1所示,以下称作“基于光电耦合器的电压传感模块”,简称电压传感模块,可以分为附图2所示的五个部分组成。 电路的作用是将输入电压大小变化线性地转换成输出电流的变化,该电路的特点是输入电位升高时,输出电流变大,表现为同相关系,方便输出信号的处理。被测电压通过限流电阻向电压传感模块输入电流,在电阻R7上获得一个采样电压,输入由运算放大器IC1组成的闭电压-电流变换电路。电压传感模块中的IC1是运算放大器,IC2是光电耦合器,DZ1是并联型稳压器,稳定整个模块电路的工作电压。模块电路中运放向光电耦合器灌入电流,相耦合的光电器件输出电流用以提升运放反相端电位。由运算放大器两个输入端等电位的工作特点决定,输入电压必定与反馈电流成比例关系。变换电路的输出电流信号反馈与输出采用二只特性一致的光电耦合器IC2,使得输出电流等于反馈电流,出就是与被子测电压成比例关系,如附图2中曲线所示。为了尽量符合这一要求,最好采用集成的双光电耦合器,附图1中采用的TLP521-2就是一款最常用的双光耦器件。 电路图中运算放大器采用了 NE5532,主要考虑其工作频率高,其不足之处是自身工作电流比较大。如果采用LM358可以降低工作电流,且输入端的动态范围大,输出的最低电位较低的特性,能够尽可能增大测量范围。但LM358的延迟时间较长,加上光电耦合器的延迟,造成放大器反馈系统延迟时间很长,使得电路产生自激振荡,无法正常传输电压。当然,只要满足电路工作速度和动态范围的需要,也可以采用其他型号的运算放大器,如高速运放AD524、AD827、LM833、LF353、CA3240等。但不要使用低速器件,如低功耗运放LM358、微功耗运放LMV358等。 运算放大器的输出电阻R2用于对光电流的限制,电阻R2阻值越小,光耦的输出电流越大。若要减小运算放大器输出电压的波动幅值,使得运算放大器可以工作在低电压条件下,R2的取值应该小一些,这样也可以使得电路增益高一些。但如果R2阻值过小,会使光耦的输入电流波动幅度会变大,不利于传感电路的稳定,会产生自激振荡。所以,R2应该配合R12的设置情况,有效限制光电耦合器的电流大小,不至于造成光电耦合器的反馈过强。R2的取值原则是在静态下光耦反馈造成运放反相端的电位约等于运放输出端电位,配合R1的阻值使其有一个合适的光电流,如ImA电流值。以静态下光电耦合器驱动电流Id取ImA为例,民和R1值由下式确定。 IdR2 + 2.0 ? UdR1 w Vcc 其中2.0是两只光耦中发光二极管的总导通电压,单位为伏特冰是光耦的电流传输比,Vcc/2是运算放大器输入端的静态电位值,光电耦合器驱动电流Id人为给定。 虽然电路采用了工作频率较高的运算放大器NE5532,若限流电阻R2取值不大,还必须连接反馈电阻R12,以消除单独由光耦反馈造成的电路自激振荡。加入负反馈电阻R12后,使得运算放大器输出电位波动不会过分剧烈,实际是限制了在光耦反馈未有效作用时运算放大器输出电压,防止了光电耦合器反馈的电压过大。反馈电阻R12的取值标准是:单独由R12决定的输出电压动态幅度在放大电路的动态范围内,但要高于光耦单独正常作用下的输出电压。也可以认为R12构成了即时电压负反馈,光电耦合器构成了延迟电流负反馈。延迟负反馈系统是不稳定的系统,双反馈系统使得工作稳定。R12具体值要通过实验调整,以消除自激振荡为目标确定R12。 电压传感模块的电流传输比由下式近似计算:本文档来自技高网
...

【技术保护点】
基于光电耦合器的线性电压检测方法,其特征是:采用运算放大器,成双的光电耦合集成器等,通过其中一对光电耦合器构成深度电流负反馈,通过电阻电容器件组成深度电压负反馈,整体组成具有双闭环结构的深度负反馈电压‑电流变换电路,由此方法消除光电耦合器带来的非线性失真现象,由另一对电流传输特性完全相同的光电耦合器以电流形式隔离输出;在运算放大器输出电流支路中设置比例微分电路,在运算放大器的输出端与反相端之间再并联阻容比例微分电路,由此方法前移光电耦合器驱动电流,弥补高频段的信号传输相位滞后问题;在运算放大器的工作状态设置上,预先给运算放大器一个静态电流,并且将运算放大器的电压增益设置成小于1,运算放大器输入端口电位设置在运算放大器供电电压的中间值附近。

【技术特征摘要】
1.基于光电耦合器的线性电压检测方法,其特征是:采用运算放大器,成双的光电耦合集成器等,通过其中一对光电耦合器构成深度电流负反馈,通过电阻电容器件组成深度电压负反馈,整体组成具有双闭环结构的深度负反馈电压-电流变换电路,由此方法消除光电耦合器带来的非线性失真现象,由另一对电流传输特性完全相同的光电耦合器以电流形式隔离输出;在运算放大器输出电流支路中设置比例微分电路,在运算放大器的输出端与反相端之间再并联阻容比例微分电路,由此方法前移光电耦合器驱动电流,弥补高频段的信号传输相位滞后问题;在运算放大器的工作状态设置上,预先给运算放大器一个静态电流,并且将运算放大器的电压增益设置成小于I,运算...

【专利技术属性】
技术研发人员:陈庭勋
申请(专利权)人:浙江海洋学院陈庭勋
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1