仿生机器人用红外感应模块制造技术

技术编号:10311622 阅读:111 留言:0更新日期:2014-08-13 14:35
本发明专利技术属于机器人控制电路技术领域,具体为一种仿生机器人用红外感应模块,包括红外线探测传感器IC1,所述红外线探测传感器IC1的电源端正极并接电阻R1的一端后与电源正极VCC相连,所述电阻R1的另一端并接电阻R2的一端和电容C1的一端后与NPN型三极管Q1的集电极相连,所述红外线探测传感器IC1的信号输出端并接电阻R3的一端后与电容C2的一端相连,所述电阻R2的另一端并接电容C2的另一端后与NPN型三极管Q1的基极相连,所述红外线探测传感器IC1的电源端负极并接电阻R3的另一端和NPN型三极管Q1的发射极后接地。本发明专利技术中的红外感应模块均采用低电压低功耗直流电路,电路结构简洁,实用性强。

【技术实现步骤摘要】

   本专利技术属于机器人控制电路
,具体为一种仿生机器人用红外感应模块
技术介绍
机器人是自动执行工作的机器装置,它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动,它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。 现有的大多数机器人本质上还属于一种能够行走和发音的机器,大多数不具有“人”所具有的物理感知能力,不具有动物或者人体的感知功能,不能够独立判断人或者动物的靠近和判断该物体的大小、位置等,交互性较差。
技术实现思路
本专利技术克服现有技术存在的不足,所要解决的技术问题是:提供一种能够感知人体或者动物信号的仿生机器人用红外感应模块。 本专利技术是采用如下技术方案实现的: 一种仿生机器人用红外感应模块,包括红外线探测传感器IC1,所述红外线探测传感器IC1的电源端正极并接电阻R1的一端后与电源正极VCC相连,所述电阻R1的另一端并接电阻R2的一端和电容C1的一端后与NPN型三极管Q1的集电极相连,所述红外线探测传感器IC1的信号输出端并接电阻R3的一端后与电容C2的一端相连,所述电阻R2的另一端并接电容C2的另一端后与NPN型三极管Q1的基极相连,所述红外线探测传感器IC1的电源端负极并接电阻R3的另一端和NPN型三极管Q1的发射极后接地。 所述电容C1的另一端串接电阻R4后与运算放大器IC2的正输入端相连,所述运算放大器IC2的负输入端并接电阻R5的一端和电容C3的一端后与电阻R6的一端相连,所述电阻R5的另一端串接电容C4后接地,所述电容C3的另一端并接电阻R6的另一端后与运算放大器IC2的输出端相连。 使用时,所述运算放大器IC2的输出端与主控制器模块的信号输入端口相连。 所述红外线探测传感器IC1可以采用型号为Q74的红外线传感器;所述运算放大器IC2采用型号为LM358的运算放大器芯片,所述红外线探测传感器IC1探测到前方人体或者动物体辐射出的红外线信号时,由红外线探测传感器IC1信号输出端输出微弱的电信号,经NPN型三极管Q1等组成第一级放大电路放大,再通过电容C1输入到运算放大器IC2中进行高增益、低噪声放大,此时由运算放大器IC2输出的信号已经足够强,最后将该放大的信号发送至主控制器模块,主控制器模块经过模数转换模块,将上述信号转化为相应的电信号,满足了仿生机器人对红外信号的探测需要。 本专利技术与现有技术相比具有的有益效果是:本专利技术中仿生机器人能够通过红外感应模块探测周围的人或动物,使得仿生机器人具有了“人”的感知能力,完善了仿生机器人的“感觉”功能。 本专利技术中的红外感应模块均采用低电压低功耗直流电路,整个电路结构简洁,元件功耗低,能量消耗低,能够满足各种类型的仿生机器人使用,实用性强。 附图说明 图1是仿生机器人的电路结构示意图。 图2是本专利技术所述的红外感应模块的电路结构示意图。 图3是超声波发射模块的电路结构示意图。 图4是超声波接收模块的电路结构示意图。 图中:1-主控制器模块、2-红外感应模块、3-超声波发射模块、4-超声波接收模块、5-时钟模块、6-存储模块、7-复位控制模块、8-电源模块。 具体实施方式 下面结合附图对本专利技术做进一步详细的说明: 如图2所示,仿生机器人用红外感应模块2包括红外线探测传感器IC1,所述红外线探测传感器IC1的电源端正极并接电阻R1的一端后与电源正极VCC相连,所述电阻R1的另一端并接电阻R2的一端和电容C1的一端后与NPN型三极管Q1的集电极相连,所述红外线探测传感器IC1的信号输出端并接电阻R3的一端后与电容C2的一端相连,所述电阻R2的另一端并接电容C2的另一端后与NPN型三极管Q1的基极相连,所述红外线探测传感器IC1的电源端负极并接电阻R3的另一端和NPN型三极管Q1的发射极后接地。 所述电容C1的另一端串接电阻R4后与运算放大器IC2的正输入端相连,所述运算放大器IC2的负输入端并接电阻R5的一端和电容C3的一端后与电阻R6的一端相连,所述电阻R5的另一端串接电容C4后接地,所述电容C3的另一端并接电阻R6的另一端后与运算放大器IC2的输出端相连,所述运算放大器IC2的输出端与主控制器模块1的信号输入端口相连。 具体应用时,上述红外感应模块应用于一种仿生机器人动物感测电路中,如图1所示,一种仿生机器人动物感测电路,包括:主控制器模块1、红外感应模块2、超声波发射模块3、超声波接收模块4、时钟模块5、存储模块6、复位控制模块7和电源模块8。 所述主控制器模块1分别与红外感应模块2、超声波发射模块3、超声波接收模块4、时钟模块5、存储模块6和复位控制模块7相连,所述电源模块8为整个电路供电。 如图3所示,所述超声波发射模块3的电路结构为:时基集成电路芯片IC3的7脚并接电阻R7的一端和可调电阻R8的一固定端后与可调电阻R8的活动端相连,所述电阻R7的另一端并接时基集成电路芯片IC3的2脚和时基集成电路芯片IC3的6脚后与电容C5的一端相连,所述电容C5的另一端接地;所述时基集成电路芯片IC3的8脚并接可调电阻R8的另一固定端后与电源正极VCC相连,时基集成电路芯片IC3的5脚串接电容C6后接地,时基集成电路芯片IC3的4脚与主控制器模块1的信号输出端口相连,时基集成电路芯片IC3的1脚接地,时基集成电路芯片IC3的3脚串接电阻R9后与六反相器IC4的1脚相连。 所述六反相器IC4的9脚并接六反相器IC4的11脚后与六反相器IC4的1脚相连,六反相器IC4的2脚、六反相器IC4的3脚、六反相器IC4的5脚并接一起,六反相器IC4的8脚并接六反相器IC4的10脚后与电容C7的一端相连,所述电容C7的另一端与超声波换能器S1的一输入端相连,所述六反相器IC4的4脚并接六反相器IC4的6脚后与超声波换能器S1的另一输入端相连。 如图4所示,所述超声波接收模块4的电路结构为:声波换能器S2的一输出端并接电阻R10的一端后与电容C8的一端相连,超声波换能器S2的另一输出端并接电阻R10的另一端后接地,所述电容C8的另一端串接电阻R11后与双运算放大器IC5的2脚相连。 所述双运算放大器IC5的2脚串接电阻R12后与双运算放大器IC5的1脚相连,双运算放大器IC5的1脚依次串接电容C9和电阻R13后与双运算放大器IC5的6脚相连,双运算放大器IC5的6脚串接电阻R14后与双运算放大器IC5的7脚相连,双运算放大器IC5的3脚并接电容C10的一端、电阻R15的一端和电阻R16的一端后与双运算放大器IC5的5脚相连,所述电容C10的另一本文档来自技高网...

【技术保护点】
一种仿生机器人用红外感应模块,其特征在于:包括红外线探测传感器IC1,所述红外线探测传感器IC1的电源端正极并接电阻R1的一端后与电源正极VCC相连,所述电阻R1的另一端并接电阻R2的一端和电容C1的一端后与NPN型三极管Q1的集电极相连,所述红外线探测传感器IC1的信号输出端并接电阻R3的一端后与电容C2的一端相连,所述电阻R2的另一端并接电容C2的另一端后与NPN型三极管Q1的基极相连,所述红外线探测传感器IC1的电源端负极并接电阻R3的另一端和NPN型三极管Q1的发射极后接地;所述电容C1的另一端串接电阻R4后与运算放大器IC2的正输入端相连,所述运算放大器IC2的负输入端并接电阻R5的一端和电容C3的一端后与电阻R6的一端相连,所述电阻R5的另一端串接电容C4后接地,所述电容C3的另一端并接电阻R6的另一端后与运算放大器IC2的输出端相连。

【技术特征摘要】
1.一种仿生机器人用红外感应模块,其特征在于:包括红外线探测传感器IC1,所述红外线探测传感器IC1的电源端正极并接电阻R1的一端后与电源正极VCC相连,所述电阻R1的另一端并接电阻R2的一端和电容C1的一端后与NPN型三极管Q1的集电极相连,所述红外线探测传感器IC1的信号输出端并接电阻R3的一端后与电容C2的一端相连,所述电阻R2的另一端并接电容C2的另一端后与NPN型三极管Q1的基极相连,所述红外线探测传感器IC1的电源端负极并接电阻R3的另一端和NPN型三极管Q1的发射...

【专利技术属性】
技术研发人员:闫广华闫文婧
申请(专利权)人:国家电网公司国网山西省电力公司忻州供电公司
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1