基于对齐聚类分析的运动序列检索方法技术

技术编号:10296502 阅读:313 留言:0更新日期:2014-08-07 01:23
本发明专利技术涉及一种基于对齐聚类分析的运动序列检索方法。目前已有的运动序列检索方法在考虑分割时,没有考虑每一帧运动的时间顺序,不能准确定位分割点。本发明专利技术记录保存人体运动序列;服务器端处理运动序列,获取运动序列的特征,合并所有运动序列的特征,生成特征数据库;服务器端计算客户端提供运动序列的特征;服务器端将客户端提供运动序列所提取的特征与特征数据库中的特征进行匹配,分别计算特征之间的距离,将数据库中的运动序列按照距离进行排序并输出,作为检索结果并返回客户端。本发明专利技术基于对齐聚类分析的运动序列分割算法,并在此基础上提取运动特征,并将此特征用于运动检索中,该分割方法与真实的分割结果对比,显示了该方法的高效性。

【技术实现步骤摘要】
【专利摘要】本专利技术涉及一种。目前已有的运动序列检索方法在考虑分割时,没有考虑每一帧运动的时间顺序,不能准确定位分割点。本专利技术记录保存人体运动序列;服务器端处理运动序列,获取运动序列的特征,合并所有运动序列的特征,生成特征数据库;服务器端计算客户端提供运动序列的特征;服务器端将客户端提供运动序列所提取的特征与特征数据库中的特征进行匹配,分别计算特征之间的距离,将数据库中的运动序列按照距离进行排序并输出,作为检索结果并返回客户端。本专利技术基于对齐聚类分析的运动序列分割算法,并在此基础上提取运动特征,并将此特征用于运动检索中,该分割方法与真实的分割结果对比,显示了该方法的高效性。【专利说明】
本专利技术属于多媒体信息检索
,具体涉及一种。
技术介绍
人体运动广泛的应用于动画、游戏软件、人机交互等方面。人体运动序列无论在时间上还是在空间上都是复杂的。因此,能够有效地表述人体的运动、高效地描述运动的特征,并且能够有效的从数据库中检索出相关的运动序列变的十分重要。目前已有了运用概率上的主成分分析(PCA)算法,将人体运动序列分解成明显动作,利用指定关节点的几何特征来分本文档来自技高网...
<a href="http://www.xjishu.com/zhuanli/55/201410212696.html" title="基于对齐聚类分析的运动序列检索方法原文来自X技术">基于对齐聚类分析的运动序列检索方法</a>

【技术保护点】
基于对齐聚类分析的运动序列检索方法,其特征在于:由以下步骤实现:步骤一:人体运动序列的采集:在人体运动序列的采集中,运用微软的Kinect设备与相应的软件Blender对人体运动序列进行记录保存;步骤二:服务器端将采集的每个人体运动序列进行处理,获取运动序列的特征,合并所有运动序列的特征,生成特征数据库;步骤三:服务器端计算客户端提供运动序列的特征;步骤四:服务器端将客户端提供运动序列所提取的特征与特征数据库中的特征进行匹配,分别计算特征之间的距离,将数据库中的运动序列按照距离进行排序并输出,作为第一次检索结果并返回客户端。

【技术特征摘要】

【专利技术属性】
技术研发人员:肖秦琨郑中华
申请(专利权)人:西安工业大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1