本发明专利技术提供了一种基于斑点及直方图分析的车辆检测判别方法。方法分析道路交通卡口传回的路面图像,经直方图分析提取可能存在的非地面目标,并通过斑点分析初步判别目标类型,即汽车或三轮车/行人;当初步判断路面目标为汽车时,在目标区域扫描车牌信息,若扫描到类似车牌信息,通过分析车牌候选上方区域的灰度直方图及颜色直方图确认目标类型信息;若在目标区域未扫描到类似车牌信息,利用目标区域梯度图获取类似车前脸信息,通过对称性检测并判断车前脸候选上方区域的灰度直方图及颜色直方图确认目标类型。
【技术实现步骤摘要】
本专利技术属于图像分析及模式识别
,具体地说,属于一种。
技术介绍
随着人工智能、自动控制和模式识别等领域的发展,智能交通系统应运而生,并取得巨大发展。对路面目标的检测和分类一直是智能交通系统的重要组成部分,对于公路交通监视控制,刑侦智能辅助等都有着非常重要的意义。与传统的车辆检测技术(如采用磁感应线圈、雷达、超声波、红外线、微波和声频等)不同,基于图像的目标检测技术综合了数字图像处理和人工模式识别的相关技术。它以图像为分析对象,通过对设定区域的图像进行分析得到交通信息,具有直观、高效、检测范围广且测量精度高的特点,同时其抗干扰能力强,先进的数字图像处理技术可以消除许多自然及人为干扰,在智能交通的电视监控基础上,视频检测获得的各项数据可以传达给各个交通信号控制系统,从而与其形成一个有机的整体。现有基于视频图像的车辆检测方法中,大多采用基于视频的运动目标检测技术提取前景目标,并不能从单帧图像中提取目标,且很少对运动目标的类型,如车辆,行人,三轮车等进行判别,即难以做到真正的车辆检测。
技术实现思路
本专利技术的目的在于根据道路交通卡口传回的路面图像,通过图像分析技术判别对图像中是否存在车辆目标进行检测,进而为交通系统的车辆类型判别工作提供技术支持。为实现上述目的,本专利技术提供了一种,其包括以下部分:S01、分析道路交通卡口传回的路面图像,经直方图分析提取可能存在的非地面目标,并通过斑点分析初步判别目标类型,即汽车或三轮车/行人;S02、当初步判断路面目标为汽车时,在目标区域扫描车牌信息,若扫描到类似车牌信息,通过分析车牌候选上方区域的灰度直方图及颜色直方图确认目标类型信息;S03、若在目标区域未扫描到类似车牌信息,利用目标区域梯度图获取类似车前脸信息,通过对称性检测并判断车前脸候选上方区域的灰度直方图及颜色直方图确认目标类型。作为本专利技术的进一步改进,所述步骤SOl具体为:(I)对于输入图像I,建立其灰度直方图1hist,提取出现频次最多的灰度,将该灰度值记为B,其对应的频次为P ;(2)设定灰度区间阈值T = P/3,建立路面候选目标掩膜图像M = (I > B+T) | (I<B-T);(3)对目标掩模图像M进行中值滤波处理;(4)根据目标掩模图像M中白色像素的个数对M进行膨胀处理;(5)对目标掩模图像M进行标记,获得M中斑点集合R = {R(t)}, t = 1,2,...,Nm, Nm为M中斑点个数;(6)分析斑点集合R中各斑点的尺寸和形状,剔除面积过小和长宽比过大或过小的斑点;(7)对斑点集合R中的每对斑点RU1),R(t2),根据该对斑点在图像平面的空间分布,判断是否属于同一辆车,若是,则合并两斑点区域,进而得到斑点区域集合P = {P (c)},C = 1,2,…,Np,Np为区域集合中区域的个数;(8)分析区域集合P中的每块区域的尺寸和形状以及在图像中的位置,剔除面积过小和长宽比过大或过小以及过分靠近图像边缘的区域,得到修正后的目标区域集合P=[p' (c)}, C = 1,2,..., P, N' P为区域集合中区域的个数;(9)若N' P = 0,则对应图像中的目标类型为非汽车,如三轮车,电动车,行人,若N' P > 0,则对应图像中的目标类型可能为汽车;作为本专利技术的进一步改进,所述步骤S02具体为:(I)根据车牌颜色信息,建立车牌位置候选区(R1(J) = {[x(s), y(s)]|b(s)/min(r (s), g(s))} > Tj , j = 1,2,..., N1, N1 为车牌位置候选区个数,(r (s), g(s), b(s))为像素点s的红、绿、蓝颜色分量,Tb为颜色阈值,可取0.7 ;(2)将每一个车牌位置候选区R1GO所对应的坐标值的像素值赋1,其余像素赋0,形成二值图像bw ;(4)对二值图像bw进行中值滤波后做斑点标记,计算每一个斑点的面积、长宽比、矩形度,根据斑点的几何特征删除不可能为车牌的斑点;(5)统计经删除操作之后的斑点个数Nb,若Nb > 1,则将该斑点进行车牌区域确认;(6)若通过区域确认,获取该斑点中心[Xl,yi],并根据中心在图像中的位置确定疑似车盖区域位置,获得疑似车盖图像Ihat ;(7)获取疑似车盖图像Ihat的灰度直方图,求取对应频次最高的灰度hg ;(8)将车盖图像Ihat变换至HSI颜色空间,提取其中的H分量,获得其分量图像H ;(9)统计分量图像H的直方图,求取对应频次最高和最低的H值,分别记为MAH和MIH ;(10)若 MAH < 0.6 且 MIH > 5e_3 且 |hg_B| < 0.1,或者 MAH < 0.25,则认为当前图片中目标类型为非汽车,如三轮车/电动车/行人,否则,则认为当前图片中目标类型为汽车。与现有技术相比,本专利技术的有益效果是:本专利技术分析在线获取的交通卡口图像,利用斑点分析和直方图分析技术图像数据,对图像中是否存在车辆目标进行检测判别,为车辆类型判别提供可靠的技术支持,极大限度地降低误判和漏判率。在智能交通系统、公安刑侦监测等领域均有广泛的应用前景。【附图说明】图1为本专利技术一种【具体实施方式】中的流程示意图。【具体实施方式】下面结合附图所示的各实施方式对本专利技术进行详细说明,但应当说明的是,这些实施方式并非对本专利技术的限制,本领域普通技术人员根据这些实施方式所作的功能、方法、或者结构上的等效变换或替代,均属于本专利技术的保护范围之内。请参图1所示,图1为本专利技术一种【具体实施方式】中的流程示意图。由于国内道路上经常出现非车辆目标如三轮车、摩托车或行人压到交通卡口附近的感应线圈的情况,因此拍摄的图片可能并不包含真正的车辆。在本实施方式中,一种基于斑点及直方图分析的车辆检测方法,其包括以下部分:S01、分析道路交通卡口传回的路面图像,经直方图分析提取可能存在的非地面目标,并通过斑点分析初步判别目标类型,即汽车或三轮车/行人;所述步骤SOl具体为:(I)对于输入图像I,建立其灰度直方图1hist,提取出现频次最多的灰度,将该灰度值记为B,其对应的频次为P ;(2)设定灰度区间阈值T = P/3,建立路面候选目标掩膜图像M = (I > B+T) | (I< B-T);(3)对目标掩模图像M进行中值滤波处理;(4)根据目标掩模图像M中白色像素的个数对M进行膨胀处理;(5)对目标掩模图像M进行标记,获得M中斑点集合R = {R(t)}, t = 1,2,...,Nm, Nm为M中斑点个数;(6)分析斑点集合R中各斑点的尺寸和形状,剔除面积过小和长宽比过大或过小的斑点;(7)对斑点集合R中的每对斑点RU1),R(t2),根据该对斑点在图像平面的空间分布,判断是否属于同一辆车,若是,则合并两斑点区域,进而得到斑点区域集合P = {P (c)},C = 1,2,…,Np,Np为区域集合中区域的个数;(8)分析区域集合P中的每块区域的尺寸和形状以及在图像中的位置,剔除面积过小和长宽比过大或过小以及过分靠近图像边缘的区域,得到修正后的目标区域集合K=[p' (c)}, C = 1,2,..., P, N' P为区域集合中区域的个数;(9)若本文档来自技高网...
【技术保护点】
一种基于斑点及直方图分析的车辆检测判别方法,其特征在于,其包括以下步骤: S01、分析道路交通卡口传回的路面图像,经直方图分析提取可能存在的非地面目标,并通过斑点分析初步判别目标类型,即汽车或三轮车/行人; S02、当初步判断路面目标为汽车时,在目标区域扫描车牌信息,若扫描到类似车牌信息,通过分析车牌候选上方区域的灰度直方图及颜色直方图确认目标类型信息; S03、若在目标区域未扫描到类似车牌信息,利用目标区域梯度图获取类似车前脸信息,通过对称性检测并判断车前脸候选上方区域的灰度直方图及颜色直方图确认目标类型。
【技术特征摘要】
1.一种基于斑点及直方图分析的车辆检测判别方法,其特征在于,其包括以下步骤: 501、分析道路交通卡口传回的路面图像,经直方图分析提取可能存在的非地面目标,并通过斑点分析初步判别目标类型,即汽车或三轮车/行人; 502、当初步判断路面目标为汽车时,在目标区域扫描车牌信息,若扫描到类似车牌信息,通过分析车牌候选上方区域的灰度直方图及颜色直方图确认目标类型信息; 503、若在目标区域未扫描到类似车牌信息,利用目标区域梯度图获取类似车前脸信息,通过对称性检测并判断车前脸候选上方区域的灰度直方图及颜色直方图确认目标类型。2.根据权利要求1所述的基于斑点及直方图分析的路面目标判别方法,所述步骤SOl具体为: (1)对于输入图像I,建立其灰度直方图1hist,提取出现频次最多的灰度,将该灰度值记为B,其对应的频次为P; (2)设定灰度区间阈值T= P/3,建立路面候选目标掩膜图像M = (I > B+T) I (I<B-T); (3)对目标掩模图像M进行中值滤波处理; (4)根据目标掩模图像M中白色像素的个数对M进行膨胀处理; (5)对目标掩模图像M进行标记,获得M中斑点集合R= {R(t)}, t = 1,2,..., Nm, Nm为M中斑点个数; (6)分析斑点集合R中各斑点的尺寸和形状,剔除面积过小和长宽比过大或过小的斑占.(7)对斑点集合R中的每对斑点RU1),R(t2),根据该对斑点在图像平面的空间分布,判断是否属于同一辆车,若是,则合并两斑点区域,进而得到斑点区域集合P = {P (c)},c =1,2,…,NP,Np为区域集合中区域的个数; (8)分析区域集合P中的每块区域的尺寸和形状以及在图像中的位置,剔除面积过小和长宽比过大或过小以及过分靠近图像边缘的区域,得到修正后的目标区域集合P'={...
【专利技术属性】
技术研发人员:陈莹,化春键,
申请(专利权)人:江南大学,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。