一种冷水机组制造技术

技术编号:10219125 阅读:210 留言:0更新日期:2014-07-16 18:06
本实用新型专利技术公开了一种冷水机组,对其布管结构进行了优化,连通管至少一侧到壳管换热器的中轴线的最小距离小于壳管换热器的半径,即将连通管的部分或者全部内置于壳管换热器,利用壳管换热器的内部空间安装连通管,能够避免外部连通管结构占用大量机组空间的弊端,节省机组布置空间;且连通管具有隔热结构的双层壳体,又保证了高温高压气态工质在连通管中不至于液化,二级吸气不出现吸气带液等不利影响,保障机组性能。

【技术实现步骤摘要】
【专利摘要】本技术公开了一种冷水机组,对其布管结构进行了优化,连通管至少一侧到壳管换热器的中轴线的最小距离小于壳管换热器的半径,即将连通管的部分或者全部内置于壳管换热器,利用壳管换热器的内部空间安装连通管,能够避免外部连通管结构占用大量机组空间的弊端,节省机组布置空间;且连通管具有隔热结构的双层壳体,又保证了高温高压气态工质在连通管中不至于液化,二级吸气不出现吸气带液等不利影响,保障机组性能。【专利说明】一种冷水机组
本技术涉及制冷暖通
,特别涉及一种冷水机组。
技术介绍
目前在工业设备制造、供暖换热领域所使用的离心机组多采用多级压缩串联的形式,如双侧叶轮布置的离心机组,对于这种双侧叶轮布置离心机组,其一级排气与二级吸气之间的连通结构直接影响着机组整体布置和性能。现有技术常采用壳管外部连通管的布管结构来实现一级排气与二级吸气之间的连通,这种结构是在壳管外部通过钢管、弯头、法兰等直接将一级排气与二级吸气连通。其结构方案可以参照图1所示,双侧叶轮布置压缩机11通过一级吸气15将蒸发器16中的工质吸入一次压缩后,由一级排气14排入外部连通管13,该外部连通管13中为高温高压气态工质,二级吸气12再将外部连通管13中的气态工质吸入双侧叶轮布置压缩机11进行二次压缩,最终排到冷凝器。在此布管结构中,外部连通管13从壳管外部将一级吸气15与二级吸气12连通,外部连通管13占用大量双侧叶轮布置的离心机组的有限空间,导致机组油箱、闪发器等部件布置空间不足,机组润滑、冷却系统布管也相对困难,导致机组外观不协调,同时外部连通管13整体为悬臂支撑,机组运行过程中易振动超标,长期运行时易导致连通管螺栓松动,对机组可靠性产生影响。因此,针对上述情况,如何优化双侧叶轮布置离心机组的布管结构,节省机组布置空间,成为本领域技术人员亟待解决的重要技术问题。
技术实现思路
有鉴于此,本技术提供了一种冷水机组,相对于现有技术能够在不影响机组性能的情况下节省冷水机组的布置空间,避免机组二级吸气出现吸气带液,保障机组性能。为实现上述目的,本技术提供如下技术方案:一种冷水机组,包括壳管换热器和安装在所述壳管换热器上的压缩机,所述压缩机的一级排气和二级吸气之间连通有连通管,所述连通管至少一侧到所述壳管换热器的中轴线的最小距离小于所述壳管换热器的半径。优选的,所述连通管焊接在所述壳管换热器的壳体内壁上,且所述壳管换热器的壳体上开设有进气孔和出气孔,所述连通管的进气端通过所述进气孔连通于所述一级排气,所述连通管的出气端通过所述出气孔连通于所述二级吸气。优选的,所述壳管换热器的壳体上开设有安装井,所述连通管焊接于所述安装井内。 优选的,所述壳管换热器的壳体外表面向内凹陷形成用于同所述连通管配合的装配槽,所述连通管安装在装配槽内。优选的,所述连通管靠近所述壳管换热器的一侧的管壁具有双层壳体,所述双层壳体间保持真空或填充隔热材料。优选的,所述隔热材料为保温棉、发泡材料、纤维材料或气凝胶材料。优选的,所述连通管靠近所述壳管换热器的一侧的管壁具有由平面和连接在所述平面两侧的斜面构成的U形结构。优选的,所述平面与其两侧的所述斜面之间的夹角大小均在120°到150°之间。优选的,所述平面与其两侧的所述斜面之间的夹角大小均为135°。优选的,所述连通管靠近所述壳管换热器的一侧的管壁具有圆弧面结构,所述圆弧面位于同一个圆柱体的外圆周面上。优选的,所述圆弧面的中轴线平行于所述壳管换热器壳体的中轴线。优选的,所述圆弧面的半径等于所述壳管换热器壳体的半径。优选的,所述冷水机组为离心式冷水机组,所述壳管换热器为所述离心式冷水机组的蒸发器或冷凝器。从上述的技术方案可以看出,本技术提供的冷水机组,对其布管结构进行了优化,连通管至少一侧到壳管换热器的中轴线的最小距离小于壳管换热器的半径,即将连通管的部分或者全部内置于壳管换热器,能够避免现有外部连通管结构占用大量机组空间的弊端,节省冷水机组的布置空间。【专利附图】【附图说明】为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1为现有技术中双侧叶轮布置离心机组的结构示意图;图2为本技术实施例提供的双侧叶轮布置离心机组的结构示意图;图3为本技术实施例提供的一种连通管的截面结构示意图;图4为本技术实施例提供的另一种连通管的截面结构示意图。其中,在图1的现有技术中,11为双侧叶轮布置压缩机,12为二级吸气,13为外部连通管,14为一级排气,15为一级吸气,16为蒸发器;在图2-图4的本方案实施例中,21为双侧叶轮布置压缩机,22为二级吸气,23为连通管,24为一级排气,25为一级吸气,26为蒸发器,27为双层壳体,28为隔热材料。【具体实施方式】本技术公开了一种冷水机组,相对于现有技术能够在不影响机组性能的情况下节省冷水机组的布置空间,避免机组二级吸气出现吸气带液,保障机组性能。下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。请参阅图2-图4,图2为本技术实施例提供的双侧叶轮布置离心机组的结构示意图;图3为本技术实施例提供的一种连通管的截面结构示意图;图4为本技术实施例提供的另一种连通管的截面结构示意图。本技术实施例提供的冷水机组,包括圆柱形的壳管换热器和安装在壳管换热器上的压缩机(在此以双侧叶轮布置压缩机21为例),该压缩机的一级排气24和二级吸气22之间连通有连通管23,其核心改进点在于,连通管23至少一侧到壳管换热器的中轴线的最小距离小于壳管换热器的半径,即将连通管23的部分或者全部内置于壳管换热器,其结构可以参照图2所示。从上述的技术方案可以看出,本技术实施例提供的冷水机组,对其布管结构进行了优化,利用壳管换热器的内部空间安装连通管,能够避免现有外部连通管结构占用大量机组空间的弊端,节省冷水机组的布置空间。需要说明的是,本方案中的壳管换热器可以为冷凝器或者蒸发器,一般根据压缩机的位置选择。对于将连通管嵌在冷凝器上的方式,适用于压缩机在冷凝器上的结构,但由于二级排气都要排入冷凝器,因此这种结构不易实现,并不常用;鉴于本领域的离心机组的压缩机通常都放在蒸发器上,因此连通管开在蒸发器内部的布管结构更为简洁和实用,本技术也是以蒸发器为例进行说明,如图2中的蒸发器26所示。在本方案提供的第一个实施例中,将连通管23焊接在壳管换热器内侧,将该壳管换热器隔出一部分空间,并在其壳体上设置开口,形成流通管道。具体的,连通管23焊接在壳管换热器的壳体内壁上,且壳管换热器的壳体上开设有进气孔和出气孔,连通管23的进气端通过进气孔连通于一级排气24,连通管23的出气端通过出气孔连通于二级吸气25。上述的连通管23可以采用完整的本文档来自技高网
...

【技术保护点】
一种冷水机组,包括壳管换热器和安装在所述壳管换热器上的压缩机,所述压缩机的一级排气和二级吸气之间连通有连通管,其特征在于,所述连通管至少一侧到所述壳管换热器的中轴线的最小距离小于所述壳管换热器的半径。

【技术特征摘要】

【专利技术属性】
技术研发人员:周堂周宇王晨光王娟刘贤权周俊男潘翠金成召
申请(专利权)人:珠海格力电器股份有限公司
类型:新型
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1