一种耗尽型GaN-HEMT功放的控制电路制造技术

技术编号:20331114 阅读:56 留言:0更新日期:2019-02-13 07:00
本发明专利技术公开了一种耗尽型GaN‑HEMT功放的控制电路,通过稳压芯片U1的电压转换实现对逻辑门芯片的供电,再经过稳压芯片U2实现GaN‑HEMT功放栅极控制电压的输出,从而使稳压芯片U2产生并输出反馈信号,该反馈信号与控制GaN‑HEMT功放开关的控制电压V_Ctrl共同决定逻辑门的状态,当两个信号同时有效的情况下,逻辑门的输出控制NMOS管Q1的导通信号,进而使PMOS管Q2随之导通,从而输出GaN‑HEMT功放的漏极电压,实现GaN‑HEMT功放的上电保护及开关控制。

【技术实现步骤摘要】
一种耗尽型GaN-HEMT功放的控制电路
本专利技术属于功放控制及保护电路
,更为具体地讲,涉及一种耗尽型GaN-HEMT功放的控制电路。
技术介绍
功放在实际的工作中是整个收发链路中耗电最严重的模块,为了实现节能以及减少电磁干扰的目的,我们需要在发射链路不工作的情况下,使功放处于不工作的状态,因此我们需要特定的控制电路实现对功放的收发控制以配合整个收发链路的运行。另一方面,以GaN为代表的第三代半导体材料具有宽禁带、高电子迁移率、高电子饱和速率、高击穿电场、高热导率、化学稳定性好和抗辐射能力强等特点,高电子迁移率晶体管(GaN-HEMT)功率器件具有高功率密度、高效率等优点,成为目前固态功率放大器的理想器件。但是与此同时耗尽型GaN-HEMT功放需要严格的上下电时序控制操作,否则很容易烧毁晶体管,这种特性增加了GaN-HEMT功放的研究成本并阻碍了它商业化应用的普及。因此,我们需要相应的上下电时序保护电路保障耗尽型GaN-HEMT功放操作简易性的同时防止晶体管的烧毁。功放控制及保护电路技术就是在相应的需求下为特定类型的功放提供控制及保护电路的技术。对于耗尽型GaN-HEMT功放的最大难点在于保障上电时栅极电压先于漏极电压加载在晶体管上,而在下电时漏极电压要先于栅极电压撤消,这需要严格的上下电时序控制保护电路。与此同时,收发链路对于功放的开关控制是节能以及减少电磁干扰的必要手段之一,因此外部对功放的开关控制也是整体控制电路中的必要组成部分。同时,为了商业化的应用,单电源电压输入的简便应用必不可少,这也为耗尽型GaN-HEMT功放的控制保护电路的设计提供了不小的阻碍。
技术实现思路
本专利技术的目的在于克服现有技术的不足,提供一种耗尽型GaN-HEMT功放的控制电路,通过逻辑门电路对功放的开关控制以及电路的结构,从而实现功放的开关控制与上下电时序保护。为实现上述专利技术目的,本专利技术一种耗尽型GaN-HEMT功放的控制电路,其特征在于,包括:输入电源VCC,为控制电路中的逻辑门及GaN-HEMT功放的栅极与漏极供电;稳压芯片U1,将VCC输入的高电源电压转换为逻辑门所需的低供电电压及稳压芯片U2的输入电压;稳压芯片U2,将低的正电压输入转换为GaN-HEMT功放所需的负的栅极供电电压VG,同时在栅极电压输出稳定的情况下向后级电路中的逻辑门传递反馈信号;逻辑门芯片U3,接收反馈信号并根据反馈信号的高或低电平有效,接收对应有效的输入控制功放开/关的控制电压V_Ctrl;当反馈信号为低电平有效时,则外接的控制电压V_Ctrl为低电平有效,此时逻辑门芯片U3选择或非门,输出有效高电平信号;当反馈信号为高电平有效时,则外接的控制电压V_Ctrl为高电平有效,此时逻辑门芯片U3选择与门,输出有效高电平信号;当反馈信号或外接的控制电压V_Ctrl为无效信号时,逻辑门输出无效的低电平,且无法驱动后续电路;NMOS管Q1,其栅极接分压电阻R1、源极接地、漏极接分压电阻R2;将逻辑门输出的有效高电平信号经分压过电阻R1后,输入至Q1并导通;PMOS管Q2,其栅极接分压电阻R2、R3对输入电源电压的分压、源极接输入电源VCC、漏极输出GaN-HEMT功放所需的漏极电压VD;在Q1导通的情况下,通过分压电阻R2、R3对输入电源电压进行分压,再输入至Q2的栅极,使Q2的栅源电压为特定的负值,从而使Q2的漏源电阻最小,并使Q2导通,从而输出GaN-HEMT功放所需的漏极电压VD,实现了GaN-HEMT功放上电保护;反之,在Q1截止的情况下,通过电阻R2,R3及Q1对输入电源电压的分压作用使Q2的栅源电压无法达到所需的阈值电压,Q2截止,从而无法输出GaN-HEMT功放所需的漏极电压VD;关闭输入电源VCC时,GaN-HEMT功放的漏极电压经过ns级的延时后消失,而栅极电压则经过两个稳压芯片需要us级别的延时后消失,即栅极电压在漏极电压之后下电,实现了GaN-HEMT功放的下电保护。本专利技术的专利技术目的是这样实现的:本专利技术一种耗尽型GaN-HEMT功放的控制电路,通过稳压芯片U1的电压转换实现对逻辑门芯片的供电,再经过稳压芯片U2实现GaN-HEMT功放栅极控制电压的输出,从而使稳压芯片U2产生并输出反馈信号,该反馈信号与控制GaN-HEMT功放开关的控制电压V_Ctrl共同决定逻辑门的状态,当两个信号同时有效的情况下,逻辑门的输出控制NMOS管Q1的导通信号,进而使PMOS管Q2随之导通,从而输出GaN-HEMT功放的漏极电压,实现GaN-HEMT功放的上电保护及开关控制。同时,本专利技术一种耗尽型GaN-HEMT功放的控制电路还具有以下有益效果:(1)、本专利技术通过稳压芯片U2将低的正电压输入转换为GaN-HEMT功放所需稳定的的负的栅极供电电压VG,当栅极电压需要改变时,通过调节U2的输出电路即可实现可调的栅极电压VG的稳定输出;(2)、在Q1导通的情况下,通过电阻R2,R3对输入电源电压的分压作用使Q2的栅源电压为特定的负值,从而使Q2的漏源电阻最小(一般为mΩ量级),并使Q2导通,因为晶体管的输出电阻远远大于Q2的漏源电阻,因此GaN-HEMT功放所需的漏极电压VD可以视为输入电源电压VCC,实现漏极电压的稳定输出;(3)、稳定的栅极电压输出与外部控制电压V_Ctrl共同控制漏极电压的输出,在满足了耗尽型GaN-HEMT功放的上电时序之外,同时保证了外部信号能够控制功放的开关;(4)、关闭输入电源时,GaN-HEMT功放的漏极电压经过ns级的延时后消失,而栅极电压因为需要经过两个稳压芯片(或者更多),因此需要us级别的延时后消失。因为栅极电压在漏极电压之后下电,因此实现了GaN-HEMT功放的下电保护;(5)、本专利技术采用单电源电压输入,使整个控制电路简洁明了,上下电操作简单,便于实际应用。附图说明图1是本专利技术一种耗尽型GaN-HEMT功放的控制电路原理图;具体实施方式下面结合附图对本专利技术的具体实施方式进行描述,以便本领域的技术人员更好地理解本专利技术。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本专利技术的主要内容时,这些描述在这里将被忽略。实施例图1是本专利技术一种耗尽型GaN-HEMT功放的控制电路原理图。在本实施例中,如图1所示,本专利技术一种耗尽型GaN-HEMT功放的控制电路,包括:输入电源VCC、稳压芯片U1、稳压芯片U2、逻辑门芯片U3、NMOS管Q1、PMOS管Q2,以及分压电阻R1、R2、R3;输入电源VCC,采用单个供电电源电压,该电源电压是GaN-HEMT功放所需的漏极供电电压,该电源电压经过稳压芯片后成为后续电路中逻辑门的供电电压以及提供给GaN-HEMT功放的栅极电压;稳压芯片U1,将VCC输入的高电源电压转换为逻辑门所需的低供电电压及稳压芯片U2的输入电压,在输入的电源电压较大的情况下可以考虑使用多个稳压芯片串联,从而将高压转换为稳压芯片U2需要的低压;稳压芯片U2,将低的正电压输入转换为GaN-HEMT功放所需的负的栅极供电电压VG,同时在栅极电压输出稳定的情况下向后级电路中的逻辑门传递反馈信号;逻辑门芯片U3,接收反馈信号并根据反馈信号的高或低电平有效,接收对应有效的输入控制功放开/关本文档来自技高网
...

【技术保护点】
1.一种耗尽型GaN‑HEMT功放的控制电路,其特征在于,包括:输入电源VCC,为控制电路中的逻辑门及GaN‑HEMT功放的栅极与漏极供电;稳压芯片U1,将VCC输入的高电源电压转换为逻辑门所需的低供电电压及稳压芯片U2的输入电压;稳压芯片U2,将低的正电压输入转换为GaN‑HEMT功放所需的负的栅极供电电压VG,同时在栅极电压输出稳定的情况下向后级电路中的逻辑门传递反馈信号;逻辑门芯片U3,接接收反馈信号并根据反馈信号的高或低电平有效,接收对应有效的输入控制功放开/关的控制电压V_Ctrl;当反馈信号为低电平有效时,则外接的控制电压V_Ctrl为低电平有效,此时逻辑门芯片U3选择或非门,输出有效高电平信号;当反馈信号为高电平有效时,则外接的控制电压V_Ctrl为高电平有效,此时逻辑门芯片U3选择与门,输出有效高电平信号;当反馈信号或外接的控制电压V_Ctrl为无效信号时,逻辑门输出无效的低电平,且无法驱动后续电路;NMOS管Q,其栅极接分压电阻R1、源极接地、漏极接分压电阻R2;将逻辑门输出的有效高电平信号经分压过电阻R1后,输入至Q1并导通;PMOS管Q2,其栅极接分压电阻R2、R3对输入电源电压的分压、源极接输入电源VCC、漏极输出GaN‑HEMT功放所需的漏极电压VD;在Q1导通的情况下,通过分压电阻R2、R3对输入电源电压进行分压,再输入至Q2的栅极,使Q2的栅源电压为特定的负值,从而使Q2的漏源电阻最小,并使Q2导通,从而输出GaN‑HEMT功放所需的漏极电压VD,实现了GaN‑HEMT功放上电保护;反之,在Q1截止的情况下,通过电阻R2,R3及Q1对输入电源电压的分压作用使Q2的栅源电压无法达到所需的阈值电压,Q2截止,从而无法输出GaN‑HEMT功放所需的漏极电压VD;关闭输入电源VCC时,GaN‑HEMT功放的漏极电压经过ns级的延时后消失,而栅极电压则经过两个稳压芯片需要us级别的延时后消失,即栅极电压在漏极电压之后下电,实现了GaN‑HEMT功放的下电保护。...

【技术特征摘要】
1.一种耗尽型GaN-HEMT功放的控制电路,其特征在于,包括:输入电源VCC,为控制电路中的逻辑门及GaN-HEMT功放的栅极与漏极供电;稳压芯片U1,将VCC输入的高电源电压转换为逻辑门所需的低供电电压及稳压芯片U2的输入电压;稳压芯片U2,将低的正电压输入转换为GaN-HEMT功放所需的负的栅极供电电压VG,同时在栅极电压输出稳定的情况下向后级电路中的逻辑门传递反馈信号;逻辑门芯片U3,接接收反馈信号并根据反馈信号的高或低电平有效,接收对应有效的输入控制功放开/关的控制电压V_Ctrl;当反馈信号为低电平有效时,则外接的控制电压V_Ctrl为低电平有效,此时逻辑门芯片U3选择或非门,输出有效高电平信号;当反馈信号为高电平有效时,则外接的控制电压V_Ctrl为高电平有效,此时逻辑门芯片U3选择与门,输出有效高电平信号;当反馈信号或外接的控制电压V_Ctrl为无效信号时,逻辑门输出无效的低电平,且无法驱动后续电路;NMOS管Q,其栅极接分压电阻R1、源极接地、漏极接分压电阻R2;将逻辑门输出的有效高电平信号经分压过电阻R1...

【专利技术属性】
技术研发人员:杨远望吴佳杰游长江江宇亭
申请(专利权)人:电子科技大学
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1