一种双基地雷达高精度测距装置及方法制造方法及图纸

技术编号:19688580 阅读:23 留言:0更新日期:2018-12-08 10:23
本发明专利技术公开了一种双基地雷达高精度测距装置及方法,接收外部输入的点迹信息,对解过距离多普勒耦合的雷达距离量测进行反解距离多普勒耦合操作,然后采用最小二乘的拟合的方法,计算出目标的相对速度和相对加速度,并对目标的径向速度进行修正,将修正后的高精度径向速度信息和点迹信息发送给双基地测距模块和可视化模块;接收来自双基地测速模块的点迹信息和高精度径向速度信息,利用高精度径向速度信息对点迹进行解距离多普勒耦合操作,然后对点迹信息的方位、俯仰分别进行滤波处理。本发明专利技术得到目标的高精度径向速度估计,本发明专利技术针对双基地雷达提出的方法具有高精度测速、测距的显著特点。

【技术实现步骤摘要】
一种双基地雷达高精度测距装置及方法
本专利技术涉及一种双基地雷达技术,尤其涉及的是一种双基地雷达高精度测距装置及方法。
技术介绍
相比与单基地雷达,双基地雷达采用收、发分置的工作方式,以其具有作用距离远、抗干扰能力强、抗摧毁能力好、抗低空/超低空突防能力强、具有反隐身能力等诸多优势,日益受到各国的重视。由于双基地雷达的发射站和接收站是分置的,导致雷达参数的测量和单基地雷达相比有很大的区别。双基地雷达的点迹测量信息为(R∑,θ,ε),其中R∑=(RT+RR)/2为目标相对于发射站和接收站距离和一半的测量值,RT为目标相对于发射站的距离,RR为目标相对于接收站的距离,θ为目标相对于接收站的方位测量,ε为目标相对于接收站的俯仰测量。对双基地雷达的目标距离测量值R∑进行误差分析:RΣ=R0+Rp+σR+ΔR(1)其中R0为目标距离的零值误差,可通过多次的检飞标校进行估计后消除;Rp为目标距离的真实位置;σR为目标距离测量的随机误差,与雷达波形设计中的信号带宽相关;ΔR为目标运动产生的距离多普勒耦合产生的距离偏差。特别地,对于高速高机动目标ΔR不可忽略,对ΔR作进一步的分析:其中,c为光速;τ为雷达脉冲宽度;B为雷达信号带宽;f0为雷达接收的信号频率;λ为雷达接收信号的波长;fd为对应目标径向速度的多普勒频移;v为目标的径向速度,双基地雷达中v表示为径向速度距离和:v=(vT+vR)/2(4)其中,vT为目标相对于雷达发射站的径向速度;vR为目标相对于雷达接收站的径向速度。由公式(2)可看出,当雷达相关参数f0,τ,B已知的条件下,目标探测中距离多普勒耦合产生的距离偏差ΔR依赖于是否能够获得高精度的测速结果,即径向速度v测速精度。双基地雷达的目标距离测量值R∑需要转换为单基接收站距离RR进行后续的航迹处理。下面分析单基接收站距离RR的计算过程,当发射站和接收站之间的基线距离L已知,通过计算目标相对于双基平面上接收站的目标视在角θR,得到目标相对于接收站的距离RR表示为:θR=arccos(cos(θ)*cos(ε))(6)从公式(5)和(6)可以看出,进行目标精确定位,首先要解决双基地距离和R∑的高精度测量问题;其次RR解算中引入了目标的方位θ和俯仰ε,而雷达测量的方位θ和俯仰ε具有一定的测量噪声,不可忽略。下面结合图1详细介绍现有的双基地雷达测距通常的处理流程。步骤(101)时统信息控制发起对时操作;步骤(102)接收双基地雷达的点迹数据(R∑,θ,ε);步骤(103)利用点迹数据(R∑,θ,ε),依据公式(5)和公式(6)计算得到(RR,θ,ε);步骤(104)利用解算的相对单基点迹数据(RR,θ,ε),完成后续的航迹跟踪处理,包括航迹起始、相关和滤波等处理,目标的径向速度v采用距离差分计算。步骤(105)显示模块对接收到的时统信息、单基点迹信息和单基航迹信息完成可视化的显示。现有技术中的弹道目标发射点估计方法,存在的缺点如下:(1)对于高速运动的目标,由于双基地雷达探测的距离和存在距离多普勒耦合的误差,要解决双基地距离和的高精度测量首先要解决高精度测速问题。传统的雷达采用距离差分测速,径向速度和径向加速度估计误差较大,导致目标检测性能下降和参数提取精度损失。(2)在目标定位解算方面,接收站虽然可以对目标的方位角和俯仰角进行较准确的测量,但是角度测量存在一定的量测噪声,需要降低量测噪声以提高目标定位的精度。
技术实现思路
本专利技术所要解决的技术问题在于:减小了距离的多普勒耦合误差和雷达角度量测噪声的影响,提供了一种双基地雷达高精度测距装置及方法。本专利技术是通过以下技术方案解决上述技术问题的,本专利技术包括时统信息控制模块、分别与时统信息控制模块连接的双基地测速模块、双基地测距模块、可视化模块;所述时统信息控制模块产生时序,并分别将时统信息发送到双基地测速模块、双基地测距模块和可视化模块;所述双基地测速模块,接收外部输入的点迹信息,对解过距离多普勒耦合的雷达距离量测进行反解距离多普勒耦合操作,然后采用最小二乘的拟合的方法,计算出目标的相对速度和相对加速度,并对目标的径向速度进行修正,将修正后的高精度径向速度信息和点迹信息发送给双基地测距模块和可视化模块;所述双基地测距模块,接收来自双基地测速模块的点迹信息和高精度径向速度信息,利用高精度径向速度信息对点迹进行解距离多普勒耦合操作,然后对点迹信息的方位、俯仰分别进行滤波处理,利用滤波得到方位、俯仰的估计进行单基距离解算操作,计算出点迹对应的单基接收站距离,并将单基点迹信息发送给双基地跟踪处理模块;所述双基地跟踪处理模块,接收来自双基地测距模块的单基点迹数据,负责完成点迹预处理、点航迹关联、航迹起始、航迹滤波,并将点迹数据和航迹数据发送给可视化模块;所述可视化模块,接收来自双基地测速模块的点迹信息和高精度径向速度信息、双基地跟踪处理模块的单基点迹数据和单基航迹数据,以及来自时统信息控制模块的时统信息,并进行显示。所述双基地测速模块进行反解距离多普勒耦合操作如下:其中:RΣ'是修正前目标距离,RΣ是修正距离多普勒耦合后的距离,ΔR为目标运动产生的距离多普勒耦合产生的距离偏差,f0为信号频率,τ为脉冲宽度,B为信号带宽,v为目标的径向速度的预测值。所述双基地测速模块,采用最小二乘的拟合,对雷达连续测量的一组距离系列R=[R′Σ1,R′Σ2,R′Σ3,…,R′Σn]和时间序列t=[t0,t1,t2,…,tn],构造函数f(x)=ax3+bx2+cx+d,构造矩阵H=[t3,t2,t,1],利用最小二乘法计算[HT*H]-1*HT*R求出参数a、b、c、d,计算得出目标的相对速度v'=-(3ax2+2bx+c),相对加速度a'=-(6ax2+2b)。对目标的径向速度进行修正,目标的相对速度v′,相对加速度a′进行修正,则目标的径向速度的估计值为其中双基地测距模块利用收到的高精度速度信息进行解距离多普勒耦合操作,计算得到距离修正值:所述点迹对应的单基接收站距离RR计算公式如下:其中,为方位估计值,为俯仰估计值,L是基线距离。一种使用所述的双基地雷达高精度测距装置进行测距的方法,包括以下步骤:(201)首先将时序发送给各个模块,发起对时操作;(202)接收外部输入的点迹信息(R∑,θ,ε),其中R∑为目标相对于发射站和接收站距离和一半的测量值,θ为目标相对于接收站的方位测量,ε为目标相对于接收站的俯仰测量;(203)判断接收的点迹是否解耦合;如果是,进行反解距离多普勒耦合操作,否则计算出目标的相对速度,相对加速度;(204)进行反解距离多普勒耦合操作,计算出修正前目标距离RΣ';(205)利用最小二乘算法计算出目标的相对速度v′,相对加速度a′;(206)将目标的相对速度v′,相对加速度a′进行修正,则目标的径向速度的估计值为其中其中,f0为信号频率,τ为脉冲宽度,B为信号带宽;(207)利用收到的高精度速度信息进行解距离多普勒耦合操作;计算得到距离修正值(208)对点迹信息的方位θ、俯仰ε分别进行滤波处理,得到方位估计值俯仰估计值(209)利用进行单基距解算操作,得到单基距离RR;将解算后的单基点迹数据进行显示;(210)接收单基点迹数据完成点迹预处理、点航迹关联、航迹起始、本文档来自技高网
...

【技术保护点】
1.一种双基地雷达高精度测距装置,其特征在于,包括时统信息控制模块、分别与时统信息控制模块连接的双基地测速模块、双基地测距模块、可视化模块;所述时统信息控制模块产生时序,并分别将时统信息发送到双基地测速模块、双基地测距模块和可视化模块;所述双基地测速模块,接收外部输入的点迹信息,对解过距离多普勒耦合的雷达距离量测进行反解距离多普勒耦合操作,然后采用最小二乘的拟合的方法,计算出目标的相对速度和相对加速度,并对目标的径向速度进行修正,将修正后的高精度径向速度信息和点迹信息发送给双基地测距模块和可视化模块;所述双基地测距模块,接收来自双基地测速模块的点迹信息和高精度径向速度信息,利用高精度径向速度信息对点迹进行解距离多普勒耦合操作,然后对点迹信息的方位、俯仰分别进行滤波处理,利用滤波得到方位、俯仰的估计进行单基距离解算操作,计算出点迹对应的单基接收站距离,并将单基点迹信息发送给双基地跟踪处理模块;所述双基地跟踪处理模块,接收来自双基地测距模块的单基点迹数据,负责完成点迹预处理、点航迹关联、航迹起始、航迹滤波,并将点迹数据和航迹数据发送给可视化模块;所述可视化模块,接收来自双基地测速模块的点迹信息和高精度径向速度信息、双基地跟踪处理模块的单基点迹数据和单基航迹数据,以及来自时统信息控制模块的时统信息,并进行显示。...

【技术特征摘要】
1.一种双基地雷达高精度测距装置,其特征在于,包括时统信息控制模块、分别与时统信息控制模块连接的双基地测速模块、双基地测距模块、可视化模块;所述时统信息控制模块产生时序,并分别将时统信息发送到双基地测速模块、双基地测距模块和可视化模块;所述双基地测速模块,接收外部输入的点迹信息,对解过距离多普勒耦合的雷达距离量测进行反解距离多普勒耦合操作,然后采用最小二乘的拟合的方法,计算出目标的相对速度和相对加速度,并对目标的径向速度进行修正,将修正后的高精度径向速度信息和点迹信息发送给双基地测距模块和可视化模块;所述双基地测距模块,接收来自双基地测速模块的点迹信息和高精度径向速度信息,利用高精度径向速度信息对点迹进行解距离多普勒耦合操作,然后对点迹信息的方位、俯仰分别进行滤波处理,利用滤波得到方位、俯仰的估计进行单基距离解算操作,计算出点迹对应的单基接收站距离,并将单基点迹信息发送给双基地跟踪处理模块;所述双基地跟踪处理模块,接收来自双基地测距模块的单基点迹数据,负责完成点迹预处理、点航迹关联、航迹起始、航迹滤波,并将点迹数据和航迹数据发送给可视化模块;所述可视化模块,接收来自双基地测速模块的点迹信息和高精度径向速度信息、双基地跟踪处理模块的单基点迹数据和单基航迹数据,以及来自时统信息控制模块的时统信息,并进行显示。2.根据权利要求1所述的一种双基地雷达高精度测距装置,其特征在于,所述双基地测速模块进行反解距离多普勒耦合操作如下:其中:RΣ'是修正前目标距离,RΣ是修正距离多普勒耦合后的距离,ΔR为目标运动产生的距离多普勒耦合产生的距离偏差,f0为信号频率,τ为脉冲宽度,B为信号带宽,v为目标的径向速度的预测值。3.根据权利要求2所述的一种双基地雷达高精度测距装置,其特征在于,所述双基地测速模块,采用最小二乘的拟合,对雷达连续测量的一组距离系列R=[R′Σ1,R′Σ2,R′Σ3,…,R′Σn]和时间序列t=[t0,t1,t2,…,tn],构造函数f(x)=ax3+bx2+cx+d,构造矩阵H=[t3,t2,t,1],利用最小二乘法计算[HT*H]-1*HT*R求出参数a、b、c、d,计算得出目标的相对速度v'=-(3ax2+2bx+c),相对加速度a'=-(6ax2+2b)。4.根据权利要求3所述的一种双基地雷达高精度测距装置,其特征在于,对目标的径向速度进行修正,目标的相对速度v′,相对加速度a′进行修正,则目标的径向速度的估计值为其中5.根据权利要求3所述的一种双基地雷达高精度测距装置,其特征在于,双基地测距模块利用收到的高精度速度信息进行解距离多普勒耦合操作,计算得到...

【专利技术属性】
技术研发人员:钮俊清唐匀龙沈静波沙祥杨利民
申请(专利权)人:中国电子科技集团公司第三十八研究所
类型:发明
国别省市:安徽,34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1