温馨提示:您尚未登录,请点 登陆 后下载,如果您还没有账户请点 注册 ,登陆完成后,请刷新本页查看技术详细信息。
本发明公开了一种基于深度学习的工件表面缺陷检测方法,具体为:采集不同背景及光照条件下的工件图像;对采集的工件图像进行预处理;构建深度卷积神经网络模型获得6个不同层的特征图;采用特征金字塔特征图进行多尺度特征融合预测,使用K‑means聚类算...该专利属于广州中国科学院先进技术研究所所有,仅供学习研究参考,未经过广州中国科学院先进技术研究所授权不得商用。
温馨提示:您尚未登录,请点 登陆 后下载,如果您还没有账户请点 注册 ,登陆完成后,请刷新本页查看技术详细信息。
本发明公开了一种基于深度学习的工件表面缺陷检测方法,具体为:采集不同背景及光照条件下的工件图像;对采集的工件图像进行预处理;构建深度卷积神经网络模型获得6个不同层的特征图;采用特征金字塔特征图进行多尺度特征融合预测,使用K‑means聚类算...