利用模式识别技术对炉况整体状态进行评估的方法技术

技术编号:9618407 阅读:124 留言:0更新日期:2014-01-30 06:15
本发明专利技术所设计的一种利用模式识别技术对炉况整体状态进行评估的方法,它依次进行如下步骤:1)采集高炉中各种所需的数据;2)将炉顶气流分布模式划分为A个类;将炉型变化模式划分为B个类;将炉温变化模式划分为C个类;将炉缸工作状态模式划分为D个类;4)确认当前的炉况;5)选择下料指数、熔损反应碳量、高炉利用系数和燃料比对步骤4中得到的当前炉顶气流分布状况、炉型变化状况、炉温状况和炉缸状况进行评判。本发明专利技术的炉况整体状态评估方法能在整体上反映高炉的运行状态,炉况评估结果更加准确,实时性更强,提高了高炉维护依据的准确性,降低了高炉运行失常的可能性。

A method for evaluating the overall state of furnace conditions by pattern recognition

A use of pattern recognition technology on furnace overall condition assessment method designed by the invention, it is followed by the following steps: 1) all the necessary data acquisition in the blast furnace; 2) the top air distribution mode is divided into A; divide the furnace type pattern for B; the temperature of the furnace change mode is divided into C; will hearth working state of the divided into D; 4) to confirm the current furnace; 5) for evaluation of material index, melting reaction of carbon, blast furnace utilization coefficient and fuel ratio in step 4 the current distribution, the top air condition, furnace type change the status and the status of the hearth temperature. The whole furnace condition assessment method of the invention can reflect the running state of blast furnace in the furnace, the evaluation results are more accurate, more real-time, improves the accuracy of blast furnace maintenance basis, reducing the possibility of blast furnace operation.

【技术实现步骤摘要】
利用模式识别技术对炉况整体状态进行评估的方法
本专利技术涉及钢铁冶炼控制
,具体地指一种利用模式识别技术对炉况整体状态进行评估的方法。技术背景目前中国钢产量产能7亿多吨,中国大多采用高炉炼铁,每座高炉都配套有烧结厂、焦化厂,烧结、焦化、炼铁共同构成了炼铁系统,每一个炼铁系统都是一系列巨大的污染源,每年产生大量的粉尘、噪声和二氧化硫等污染物,一旦高炉系统失常,产生的排放更是惊人,高炉整体状态的稳妥、可控成了广大高炉工作者的主要目标。目前高炉逐步走上大型化,每座高炉内容积为1000m3至5500m3不等,以容积为3200m3的高炉为例,每天可以生产9000吨左右的生铁,产生15000吨左右的CO2,一旦高炉整体状况失常,产量会下降,但消耗则会大幅度上升,如生铁产量下降到5000吨,但消耗相差无几,这种失常也会打乱整个钢铁联合企业的生产节奏,给生产组织造成巨大破坏,确保高炉整体状况的稳定、顺行成了高炉操作第一等的任务。尽管高炉本身是一种多变量、大滞后、非线性的巨大系统,高炉冶炼过程中存在着巨大的物质流、能量流、信息流,对于大于2000m3的大型高炉,每年都会因操作原因发生几次整体性失常,一旦判断有误,就会造成巨大损失,但由于高炉体积巨大,监测信息量很大,每座大型高炉都有500点以上的检测内容,不同人员因经验、技能的差异对同一炉况会得出不同的观点,会采取不同的调剂措施,最终结果截然不同,目前信息技术突飞猛进,用计算机来辅助或者自动进行炉况的判断就成为必然,多年来,国内外的高炉工作者在高炉数学模型开发,高炉专家系统设计及应用等方面进行了几十年的探索,尽管取得了一些成绩,但与实用性的要求相比仍然相距甚远,文献“储满生,基于反应动力学的全高炉数学模型概述,河南冶金,2009年6月”中概述了近几十年来日本在高炉数学模型开发方面所取得的成就,大部分实用的数学模型只关注高炉的局部问题,如布料模拟、炉型管理、炉缸平衡、管道、滑料等,全炉数学模型仅仅有演示功能,实际用于高炉过程评判与控制则相差甚远,文献“陈令坤等,高炉冶炼专家系统的开发研究,钢铁,2006年1月”等所涉及的专家系统也是通过利用人工智能技术对单个的控制目标(如炉型管理、布料控制、炉温控制和炉缸平衡计算等)进行处理,将各个目标组合成一个高炉过程评判的整体,但个目标的优化并不代表整体的优化。目前还没有利用计算机技术来实时评估高炉整体状况的方法。
技术实现思路
本专利技术的目的就是要提供一种利用模式识别技术对炉况整体状态进行评估的方法,该方法能实现高炉运行状态的整体精准评估。为实现此目的,本专利技术所设计的利用模式识别技术对炉况整体状态进行评估的方法,其特征在于,它包括如下步骤:步骤1:通过数据采集模块,实时采集高炉运行过程操作数据、高炉冷却系统监测数据、高炉原料数据、高炉布料矩阵数据、炉顶煤气温度数据、高炉煤气成分数据、下料速度数据、料面偏斜程度数据、炉缸中心点温度数据和炉缸残存渣铁量数据,所述高炉运行过程操作数据包括风口区理论燃烧温度数据、风口区风速数据、风口区风量数据、风口区风温数据、风口区风压数据、加湿量数据、富氧量数据、喷煤量数据,所述高炉冷却系统监测数据包括冷却壁温度数据、冷却系统流量数据、冷却水压力数据和冷却水温度数据;步骤2:将步骤1中采集到的数据保存在数据库中;步骤3:在计算处理模块中利用步骤1中采集的炉顶煤气温度数据和高炉煤气成分数据设定炉顶气流分布样本单元,该炉顶气流分布样本单元中的数据用于描述炉顶气流分布模式,利用该炉顶气流分布样本单元对炉顶气流变化进行无指导的分类计算,然后对分类计算的结果自动进行模式识别,利用现有k-means算法将炉顶气流分布模式划分为A个类,上述这A类炉顶气流分布模式构成炉顶气流分布标准案例库,该炉顶气流分布标准案例库中储存了A类炉顶气流分布状况;在计算处理模块中利用步骤1中采集的冷却壁温度数据、冷却系统流量数据、冷却水压力数据和冷却水温度数据,按照包含全部模式的原则设计炉型变化样本库,该炉型变化样本库中的数据用于描述炉型变化模式,利用该炉型变化样本库对冷却壁温度变化利用无指导的分类算法自动进行模式识别,用7~9个冷却壁温度数据及该冷却壁温度数据对应的冷却系统流量数据、冷却水压力数据和冷却水温度数据构成一个炉型变化样本,表示炉型变化,通过现有SOFM自组织神经网络算法将炉型变化模式划分为B个类,上述B类炉型变化模式构成炉型变化标准案例库,该炉型变化标准案例库中储存了B类炉型变化状况;在计算处理模块中利用采集的风口区风量数据、风口区风温数据、风口区风压数据、加湿量数据、富氧量数据、喷煤量数据、高炉布料矩阵数据、高炉原料数据、高炉煤气成分数据、下料速度数据、料面偏斜程度数据和炉顶煤气温度数据按照包含全部模式的原则设计炉温变化样本库,该炉温变化样本库中的数据用于描述炉温变化模式,利用该炉温变化样本库对炉温变化利用无指导的分类算法自动进行模式识别,将炉温变化模式划分为C个类,上述炉温用铁水中硅含量表示,上述C类炉温变化模式构成炉温变化标准案例库,该炉温变化标准案例库中储存了C类炉温状况;在计算处理模块中利用采集的炉缸中心点温度数据和炉缸残存渣铁量数据评估炉缸工作状态,设计由炉缸中心点温度数据、炉缸残存渣铁量数据、风口区理论燃烧温度数据、风口区风速数据、风口区风压数据和风口区风温数据构成的炉缸工作状态样本,该炉缸工作状态样本中的数据用于描述炉缸工作状态模式,通过该炉缸工作状态样本对炉缸工作状态利用无指导的分类算法自动进行模式识别,识别出炉缸工作状态的模式后,构成炉缸工作状态案例库,通过现有k-means算法,利用炉缸工作状态案例库将炉缸工作状态模式划分为D个类,这D类炉缸工作状态模式构成炉缸工作状态标准案例库,该炉缸工作状态标准案例库中储存了D类炉缸状况;步骤4:每间隔一定时间对炉况进行一次判断,判断时首先从数据库中将当前的高炉运行过程操作数据、高炉冷却系统监测数据、高炉原料数据、高炉布料矩阵数据、炉顶煤气温度数据、高炉煤气成分数据、下料速度数据、料面偏斜程度数据、炉缸中心点温度数据和炉缸残存渣铁量数据取出,分别构建出当前的炉顶气流分布样本、炉型变化样本、炉温变化样本和炉缸工作状态样本,上述当前的炉顶气流分布样本、炉型变化样本、炉温变化样本和炉缸工作状态样本与步骤3中得到的炉顶气流分布标准案例库中的A个类炉顶气流分布状况、炉型变化标准案例库中的B个类炉型变化状况、炉温变化标准案例库中的C个类炉温状况、炉缸工作状态标准案例库中的D类炉缸状况进行比对,最接近当前炉顶气流分布样本、炉型变化样本、炉温变化样本和炉缸工作状态样本的一类炉顶气流分布状况、炉型变化状况、炉温状况和炉缸状况即表示当前的炉况;步骤5:得到每批料的下料时间即下料指数,通过炉顶煤气成分、鼓风参数计算得到熔损反应碳量,通过每天的铁水产量计算出高炉单位容积的铁产量,得到高炉利用系数,通过每天的铁产量及燃料消耗得到燃料比(冶炼一吨生铁所消耗的燃料),在计算处理模块中用下料指数、熔损反应碳量、高炉利用系数和燃料比对步骤4中得到的当前炉顶气流分布状况、炉型变化状况、炉温状况和炉缸状况进行评判;判断高炉实时的下料指数是否在8~10min/批范围内,高炉实时的熔损反应碳量是本文档来自技高网
...
利用模式识别技术对炉况整体状态进行评估的方法

【技术保护点】
一种利用模式识别技术对炉况整体状态进行评估的方法,其特征在于,它包括如下步骤:步骤1:通过数据采集模块,实时采集高炉运行过程操作数据、高炉冷却系统监测数据、高炉原料数据、高炉布料矩阵数据、炉顶煤气温度数据、高炉煤气成分数据、下料速度数据、料面偏斜程度数据、炉缸中心点温度数据和炉缸残存渣铁量数据,所述高炉运行过程操作数据包括风口区理论燃烧温度数据、风口区风速数据、风口区风量数据、风口区风温数据、风口区风压数据、加湿量数据、富氧量数据、喷煤量数据,所述高炉冷却系统监测数据包括冷却壁温度数据、冷却系统流量数据、冷却水压力数据和冷却水温度数据;步骤2:将步骤1中采集到的数据保存在数据库中;步骤3:在计算处理模块中利用步骤1中采集的炉顶煤气温度数据和高炉煤气成分数据设定炉顶气流分布样本单元,该炉顶气流分布样本单元中的数据用于描述炉顶气流分布模式,利用该炉顶气流分布样本单元对炉顶气流变化进行无指导的分类计算,然后对分类计算的结果自动进行模式识别,利用现有k?means算法将炉顶气流分布模式划分为A个类,上述这A类炉顶气流分布模式构成炉顶气流分布标准案例库,该炉顶气流分布标准案例库中储存了A类炉顶气流分布状况;在计算处理模块中利用步骤1中采集的冷却壁温度数据、冷却系统流量数据、冷却水压力数据和冷却水温度数据,按照包含全部模式的原则设计炉型变化样本库,该炉型变化样本库中的数据用于描述炉型变化模式,利用该炉型变化样本库对冷却壁温度变化利用无指导的分类算法自动进行模式识别,用7~9个冷却壁温度数据及该冷却壁温度数据对应的冷却系统流量数据、冷却水压力数据和冷却水温度数据构成一个炉型变化样本,表示炉型变化,通过现有SOFM自组织神经网络算法将炉型变化模式划分为B个类,上述B类炉型变化模式构成炉型变化标准案例库,该炉型变化标准案例库 中储存了B类炉型变化状况;在计算处理模块中利用采集的风口区风量数据、风口区风温数据、风口区风压数据、加湿量数据、富氧量数据、喷煤量数据、高炉布料矩阵数据、高炉原料数据、高炉煤气成分数据、下料速度数据、料面偏斜程度数据和炉顶煤气温度数据按照包含全部模式的原则设计炉温变化样本库,该炉温变化样本库中的数据用于描述炉温变化模式,利用该炉温变化样本库对炉温变化利用无指导的分类算法自动进行模式识别,将炉温变化模式划分为C个类,上述炉温用铁水中硅含量表示,上述C类炉温变化模式构成炉温变化标准案例库,该炉温变化标准案例库中储存了C类炉温状况;在计算处理模块中利用采集的炉缸中心点温度数据和炉缸残存渣铁量数据评估炉缸工作状态,设计由炉缸中心点温度数据、炉缸残存渣铁量数据、风口区理论燃烧温度数据、风口区风速数据、风口区风压数据和风口区风温数据构成的炉缸工作状态样本,该炉缸工作状态样本中的数据用于描述炉缸工作状态模式,通过该炉缸工作状态样本对炉缸工作状态利用无指导的分类算法自动进行模式识别,识别出炉缸工作状态的模式后,构成炉缸工作状态案例库,通过现有k?means算法,利用炉缸工作状态案例库将炉缸工作状态模式划分为D个类,这D类炉缸工作状态模式构成炉缸工作状态标准案例库,该炉缸工作状态标准案例库中储存了D类炉缸状况;步骤4:每间隔一定时间对炉况进行一次判断,判断时首先从数据库中将当前的高炉运行过程操作数据、高炉冷却系统监测数据、高炉原料数据、高炉布料矩阵数据、炉顶煤气温度数据、高炉煤气成分数据、下料速度数据、料面偏斜程度数据、炉缸中心点温度数据和炉缸残存渣铁量数据取出,分别构建出当前的炉顶气流分布样本、炉型变化样本、炉温变化样本和炉缸工作状态样本,上述当前的炉顶气流分布样本、炉型变化样本、炉温变化样本和炉缸工作状态样本与步骤3中得到的炉顶气流分布标准案例库中的A个类炉顶气流分布状况、炉型变化标准案例库中的B个类炉型变化状况、炉 温变化标准案例库中的C个类炉温状况、炉缸工作状态标准案例库中的D类炉缸状况进行比对,最接近当前炉顶气流分布样本、炉型变化样本、炉温变化样本和炉缸工作状态样本的一类炉顶气流分布状况、炉型变化状况、炉温状况和炉缸状况即表示当前的炉况;步骤5:得到每批料的下料时间即下料指数,通过炉顶煤气成分、鼓风参数计算得到熔损反应碳量,通过每天的铁水产量计算出高炉单位容积的铁产量,得到高炉利用系数,通过每天的铁产量及燃料消耗得到燃料比,在计算处理模块中用下料指数、熔损反应碳量、高炉利用系数和燃料比对步骤4中得到的当前炉顶气流分布状况、炉型变化状况、炉温状况和炉缸状况进行评判;判断高炉实时的下料指数是否在8~10min/批范围内,高炉实...

【技术特征摘要】
1.一种利用模式识别技术对炉况整体状态进行评估的方法,其特征在于,它包括如下步骤:步骤1:通过数据采集模块,实时采集高炉运行过程操作数据、高炉冷却系统监测数据、高炉原料数据、高炉布料矩阵数据、炉顶煤气温度数据、高炉煤气成分数据、下料速度数据、料面偏斜程度数据、炉缸中心点温度数据和炉缸残存渣铁量数据,所述高炉运行过程操作数据包括风口区理论燃烧温度数据、风口区风速数据、风口区风量数据、风口区风温数据、风口区风压数据、加湿量数据、富氧量数据、喷煤量数据,所述高炉冷却系统监测数据包括冷却壁温度数据、冷却系统流量数据、冷却水压力数据和冷却水温度数据;步骤2:将步骤1中采集到的数据保存在数据库中;步骤3:在计算处理模块中利用步骤1中采集的炉顶煤气温度数据和高炉煤气成分数据设定炉顶气流分布样本单元,该炉顶气流分布样本单元中的数据用于描述炉顶气流分布模式,利用该炉顶气流分布样本单元对炉顶气流变化进行无指导的分类计算,然后对分类计算的结果自动进行模式识别,利用现有k-means算法将炉顶气流分布模式划分为A个类,上述这A类炉顶气流分布模式构成炉顶气流分布标准案例库,该炉顶气流分布标准案例库中储存了A类炉顶气流分布状况;在计算处理模块中利用步骤1中采集的冷却壁温度数据、冷却系统流量数据、冷却水压力数据和冷却水温度数据,按照包含全部模式的原则设计炉型变化样本库,该炉型变化样本库中的数据用于描述炉型变化模式,利用该炉型变化样本库对冷却壁温度变化利用无指导的分类算法自动进行模式识别,用7~9个冷却壁温度数据及该冷却壁温度数据对应的冷却系统流量数据、冷却水压力数据和冷却水温度数据构成一个炉型变化样本,表示炉型变化,通过现有SOFM自组织神经网络算法将炉型变化模式划分为B个类,上述B类炉型变化模式构成炉型变化标准案例库,该炉型变化标准案例库中储存了B类炉型变化状况;在计算处理模块中利用采集的风口区风量数据、风口区风温数据、风口区风压数据、加湿量数据、富氧量数据、喷煤量数据、高炉布料矩阵数据、高炉原料数据、高炉煤气成分数据、下料速度数据、料面偏斜程度数据和炉顶煤气温度数据按照包含全部模式的原则设计炉温变化样本库,该炉温变化样本库中的数据用于描述炉温变化模式,利用该炉温变化样本库对炉温变化利用无指导的分类算法自动进行模式识别,将炉温变化模式划分为C个类,上述炉温用铁水中硅含量表示,上述C类炉温变化模式构成炉温变化标准案例库,该炉温变化标准案例库中储存了C类炉温状况;在计算处理模块中利用采集的炉缸中心点温度数据和炉缸残存渣铁量数据评估炉缸工作状态,设计由炉缸中心点温度数据、炉缸残存渣铁量数据、风口区理论燃烧温度数据、风口区风速数据、风口区风压数据和风口区风温数据构成的炉缸工作状态样本,该炉缸工作状态样本中的数据用于描述炉缸工作状态模式,通过该...

【专利技术属性】
技术研发人员:陈令坤胡正刚邹祖桥尹腾肖志新
申请(专利权)人:武汉钢铁集团公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1