微纳米硅化物颗粒增强激光熔覆合金粉末及其制备方法技术

技术编号:9588224 阅读:95 留言:0更新日期:2014-01-22 20:37
本发明专利技术为一微纳米种硅化物颗粒增强激光熔覆合金粉末及其制备方法,其特征在于:微纳米硅化物颗粒增强激光熔覆合金粉末由基体合金粉末与微纳米硅化物颗粒和粘结剂所组成,其配比为:50~98%基体合金粉末,1~45%的微纳米SiC或微纳米Si3N4、微纳米MoSi2、微纳米CoSi2其中之一或二种以上的微纳米组合混合体粉末。其制备工艺步骤是:基体合金粉末制备→添加微纳米硅化物颗粒→添加粘结剂→搅拌球磨→组合粉末→干燥→破碎→筛分。本发明专利技术的激光熔覆用合金粉末既有较高的硬度、韧性,又具有优异的耐磨性和耐蚀性,特别适用于适用于激光熔覆高冲击、高耐磨工况零部件。而且能够有效的防止在贮存、运输和使用过程中由于各组元比重相差悬殊而产生偏析。

【技术实现步骤摘要】
【专利摘要】本专利技术为一微纳米种硅化物颗粒增强激光熔覆合金粉末及其制备方法,其特征在于:微纳米硅化物颗粒增强激光熔覆合金粉末由基体合金粉末与微纳米硅化物颗粒和粘结剂所组成,其配比为:50~98%基体合金粉末,1~45%的微纳米SiC或微纳米Si3N4、微纳米MoSi2、微纳米CoSi2其中之一或二种以上的微纳米组合混合体粉末。其制备工艺步骤是:基体合金粉末制备→添加微纳米硅化物颗粒→添加粘结剂→搅拌球磨→组合粉末→干燥→破碎→筛分。本专利技术的激光熔覆用合金粉末既有较高的硬度、韧性,又具有优异的耐磨性和耐蚀性,特别适用于适用于激光熔覆高冲击、高耐磨工况零部件。而且能够有效的防止在贮存、运输和使用过程中由于各组元比重相差悬殊而产生偏析。【专利说明】
本专利技术属于镍基合金
,涉及一种微纳米激光熔覆合金粉末及其制备方法,特别是一种,该微纳米硅化物颗粒增强激光熔覆合金粉末适用于激光熔覆高耐磨工况零部件。
技术介绍
在现代的日常生活和工业生产中,金属材料的磨损与腐蚀会出现在各个领域,是破坏机械零部件、工程构件的二大主要方式之一,腐蚀将会导致机械零件的大量消耗,而磨损则是导致机械零件失效的重要原因之一。它们在损耗大量金属材料的同时,也浪费了大量资源,在经济损失中占据非常大的比重。高温、腐蚀、摩擦和磨损引起的工程构件的失效大多发生在表面,这一现象促使材料科学工作者对材料表面的极大关注,并促使材料表面改性技术的迅猛发展。人们希望在材料整体保持足够的韧性和强度的同时,使材料表面获得较高的、特定的使用性能,如耐磨、耐蚀和抗氧化等。据报道,目前,在全世界工业化国家中,在磨损上消耗的能量占总能量的二分之一,约有60%?80%的机械零部件由于磨损而失效。在一个高度发达的工业化国家,每年因磨损所造成的经济损失几乎占国民经济总产值的1%?2%。例如,美国平均每年由于磨损造成的经济损失高达200亿美元;英国平均每年由磨损造成的经济损失超过51500万英镑。在我国,由磨损造成的经济损失同样也相当严重。仅据石油、化工、煤炭、电力、农机等部门粗略统计,我国每年就有高达数百万吨的钢材消耗在磨损上,经济损失达到200?300亿元之多。所以说,金属材料的磨损影响着机械零件的性能质量和使用寿命,进而影响着这些机械零件在市场上的竞争能力。同时,金属腐蚀问题也遍及国民经济各个领域,从尖端科学技术的应用到工农业生产,从日常生活中的应用到国防工业的制造,凡是使用金属材料的地方,都不同程度上存在着腐蚀问题。据有关专家统计,全球每一分半钟就有一吨钢材被腐蚀成铁锈。例如,1975年,美国每年由腐蚀造成的经济损失高达820亿美元,占国民经济总产值的4.9%;1995年,美国由于腐蚀造成的经济损失直线上升到3000亿美元。统计表明,在一个工业发达的国家,因腐蚀造成的经济损失约占国民经济总产值的2%?4%,超过水灾、火灾、地震、和咫风等所有自然灾害造成的损失的总和。虽然我国仅为一个发展中国家,但由于腐蚀带来的损失也相当可观,每年大约5000亿元人民币,约占我国国民经济生产总值的6%左右。仅在石油与天然气领域每年由腐蚀造成的经济损失就约100亿元,煤炭工业每年由腐蚀造成的资金浪费约为55.6亿元,而电力系统每年的腐蚀损失则近17亿元。因此,从有限的资源与能源出发,现代的工业生产要求机械零部件具有足够的耐磨耐蚀性能,可以在高温、高负荷等极其恶劣的环境下长时间工作,因此解决金属的磨损与腐蚀问题已迫在眉睫。激光熔覆陶瓷技术可以将金属高的强韧性、良好的工艺性与陶瓷材料优异的耐磨、耐蚀、耐高温和抗氧化特性有机结合起来,为最有价值和竞争力的表面强化技术,也是激光熔覆技术发展的热点之一。激光熔覆是一项新兴、迅猛发展的技术,它是在高能量密度激光束照射下,基体表面一薄层与根据需要加入的合金同时熔化,形成厚度为10?1000 μ m表面熔化层,快速凝固以满足某一特殊性能要求的工艺方法,是集激光加热熔化、熔池中物质交互作用及快速凝固成型等多学科交叉的一门新技术,此技术在表面处理方面得到较细致的研究。由于局部表面受热密度大,光斑直径小,受热时间短,故工件表面上熔化区很小,传到工件内部热量少,熔化区内存在很大的温度梯度,冷却速度可达IO4?109°C /S。正是由于快速凝固,赋予合金不同于正常凝固的特点。作为表面改性手段之一的激光熔覆,适于各类金属的表层改性和修复。激光表面熔覆能保持原涂层合金成份(稀释率5?8%),仅在重熔区与基体的交界处存在很有限的相互扩散区,而此扩散区正是实现涂覆层与基体的冶金结合所必须的。它能把高性能的合金粉末涂覆在普通材料(工件)上,从而获得优异特性的表面涂层(如耐热、耐蚀、耐磨、抗冲击等优良涂层)。与传统的表面改性(热喷涂、等离子喷涂等)技术相比,它主要有以下优点:界面为冶金结合;组织极细;熔覆层成分均匀及稀释度低;覆层厚度可控;热畸变小;易实现选区熔覆和工艺过程易实现自动化。在表面改性技术中,激光熔覆已成为比较活跃的研究领域。激光表面涂层技术是七十年代中期发展起来的材料表面工程领域的前沿课题之一,国内外正在蓬勃发展。随着高功率激光器及配套技术的发展与完善,它已从实验室研究逐步走向工业应用,在未来材料表面改性领域将具有强大的生命力。激光熔覆既可用于传统材料的表面改性,提升材料的性能,又可用于表面失效零件的修复,故可用的基体材料十分广泛,如碳钢、合金钢、铸铁以及铝合金、铜合金、镍基高温合金等。此外,材料科研人员还开发了非晶态及准晶涂层等。目前,国内外对激光技术在传统材料表面的改性研究较多,高合金钢、高温合金表面改性的研究也有报道,然而应用激光熔覆修复一些机械零部件的实际工程应用却有待于进一步推广,主要原因是激光熔覆过程中常有裂纹、涂层不均匀等问题,有待于科技工作者更深一步研究。激光熔覆层材料的状态一般有粉末状、丝状、膏状等。另外还可将金属板材、粉末冶金制品、钢带和焊条等作为熔覆材料,其中合金粉末在激光熔覆技术中应用最为广泛。视工件的实际使用环境条件不同,对工件表面涂层的性能要求也不一样。激光熔覆合金体系主要有铁基合金、镍基合金、钻基合金及复合合金粉末等。铁基合金粉末适于要求局部耐磨且容易变形的零件;镍基合金适于要求局部耐磨、耐热腐蚀及抗热疲劳的构件,所需的激光功率密度要比熔覆铁基合金的略高;钻基合金涂层适于要求耐磨、耐蚀和抗热疲劳的零件;陶瓷涂层在高温下有较高的强度,且热稳定性好,化学稳定性高,适用于耐磨、耐蚀、耐高温和抗氧化性的零件。耐磨涂层是激光熔覆陶瓷涂层中研究得最早也是最多的I种。Ni基、Co基、Fe基自熔合金虽然本身就具有良好的耐磨、耐蚀、耐热性能,利用它们的激光熔覆层进行材料表面强化的研究报道已经很多。但在滑动、冲击磨损和磨粒磨损严重的条件下,单纯的Ni基、Co基、Fe基自熔性合金已不能胜任使用要求。纳米材料和纳米技术是20世纪后期出现的新材料和高新技术。金属基纳米复合材料是由纳米级的金属或非金属粒子均匀地弥散在金属及合金基体中而成,表现出不同于一般宏观复合材料的力学、热学、电学、磁学和光学性能,具有原组分不具备的特殊性能和功能,较之传统的金属材料,其比强度、比模量、耐磨性、导电、导热性能等均有大幅度的成倍提高。然而,由于纳米粒本文档来自技高网...

【技术保护点】
一种微纳米硅化物颗粒增强激光熔覆合金粉末及其制备方法,其特征在于:微纳米硅化物颗粒增强激光熔覆合金粉末由基体合金粉末与微纳米硅化物颗粒和粘结剂所组成,其配比为:50~98%基体合金粉末,1~45%的微纳米SiC或微纳米Si3N4、微纳米MoSi2、微纳米CoSi2其中之一或二种以上的微纳米组合混合体粉末,1~5%的粘结剂制备成组合粉末;其中基体合金的化学成分及其质量百分比为;0.3~0.6%C、2.0~3.5%Si、2~4%B、18~28%Cr、8~11%Cu、6~8%W、5~8%Mo、<15%Fe、0.1~1.2%MgO,0.2~2%CaF2,CeO2、Y3O2、La2O3其中之一或二种以上的组合≤0.9%、Ni余量和不可避免的杂质元素;其制备工艺步骤是:基体合金粉末制备→添加微纳米硅化物颗粒→添加粘结剂→搅拌球磨→组合粉末→干燥→破碎→筛分;具体工艺步骤如下:(1)基体合金制备基体合金粉末制备的工艺流程为:配料→熔炼→雾化→干燥→筛分;配料:原料为纯镍、石墨粉、FeCr、FeB、FeSi、Cu、W、Mo、CeO2、Y3O2、La2O3;熔炼:将上述配制好的原料在真空感应炉或中频感应炉中进行熔炼,熔化温度约为1250℃?1350℃,控制碳含量达到要求,炉前调整成分合格后,出炉温度1200~1280℃;雾化:采用惰性气或高压水雾化,雾化孔径5~10mm,雾化压力,10~14MPa;干燥:所用设备是远红外烘干机,烘干温度为220℃~280℃;筛分:由筛粉机筛出粒度范围为+150目~?350目的粉末作为成品粉;(2)添加微纳米硅化物颗粒选取粒度范围为+150目~?400目的市售微纳米SiC或微纳米Si3N4、微纳米MoSi2、微纳米CoSi2其中之一或二种以上的微纳米组合混合体粉末作为增强硬质颗粒;(3)添加粘结剂采用热固型的酚醛树脂、环氧树脂或水玻璃做粘结剂,加入环己酮或甲醇溶剂,使其溶解成树脂溶液;(4)搅拌球磨将制备好的基体合金粉末和微纳米SiC或微纳米Si3N4、微纳米MoSi2、微纳米CoSi2其中之一或二种以上的微纳米组合混合体粉末和粘结剂按照所需的比例进行配置后,倒入搅拌球磨机中,将所需剂量的树脂溶解于环己酮或甲醇溶剂使其溶解成树脂溶液;搅拌均匀后倒入球磨机内所需处理的混合粉中,将球体直径10~20mm的磨球按照2:1~3:1球料比配制好后加入到搅拌球磨机中,起动搅拌球磨机,经5~60小时的充分搅拌球磨,使混合粉各组分及 树脂液都分布均匀,将各组元粉末颗粒包裹起来,并粘结在一起,制备成微纳米组合粉末;(5)干燥将球磨好的组合粉末从球磨机中倒出,然后经150℃~200℃干燥;(6)破碎和筛分将干燥好的组合粉末进行破碎,由筛粉机筛出粒度范围为+150目~?400目的粉末分别作为成品粉,即得所需成分、所需粒度等级而又不会发生组分偏析的组合粉末。...

【技术特征摘要】

【专利技术属性】
技术研发人员:丁刚丁家伟耿德英张莹谢宗翰王爱华郭洪才印杰孙健张宁强颖怀郭长庆
申请(专利权)人:江苏盛伟模具材料有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1