一种分布式电源的优化选址与定容方法技术

技术编号:9254365 阅读:117 留言:0更新日期:2013-10-16 20:55
本发明专利技术提供一种分布式电源的优化选址与定容方法,包括以下步骤:建立分布式电源选址定容的多目标优化模型;明确多目标优化模型的约束条件;建立分布式电源随机出力模型,并对其进行处理;建立负荷随机出力模型;进行分布式电源的选址和定容。本发明专利技术以网络损耗最小和延缓投资效益最大作为目标优化函数,采用两步式优化方法求取分布式电源接入配电网的接入位置和安装容量,充分体现了分布式电源接入对配电网的积极作用,且可用于从扩容作用方面评价分布式电源接入配电网的经济效益。

【技术实现步骤摘要】
一种分布式电源的优化选址与定容方法
本专利技术属于配电网优化规划
,具体涉及一种分布式电源的优化选址与定容方法。
技术介绍
分布式电源具有灵活、分散、高效、清洁环保的特点,合理的并网应用可大大减少输电网络的成本和损耗,同时为满足系统或用户特定需求,可用于调峰或为边远地区用户供电,也可延缓输配电网升级换代所需要的巨额投资。分布式电源对配电网的影响与其接入位置和容量密切相关,分布式电源的类型、安装位置、安装容量必须与配电网相协调,才能充分发挥分布式电源对电网的积极作用。相反,不恰当的分布式电源位置和容量会导致电能损耗的增加、网络中节点电压的越限和短路电流过大等,从而造成成本沉没等负面效应。分布式电源接入配电网的选址与定容是在不改变配电系统馈线和变电站配置的情况下,建立合理准确的优化模型对分布式电源的安装位置和安装容量进行优化。这是一个多目标寻优问题,各个子目标之间相互制约、相互影响。从配电网角度出发,经济性一直是电网企业所关注的重要问题。建立经济性模型可量化地反映分布式电源对配电网的价值,实现经济上的最优配置。其中,网络损耗是影响配电网经济性的重要因素之一。一方面,分布式电源接入配电网改变了网络中的潮流分布,必然会给网损带来影响;另一方面,分布式电源的接入可消纳一部分负荷,具有一定的扩容作用,从而延缓电网升级改造投资,带来巨大的经济效益,然而这一作用一直以来并未得到应有关注。分布式电源不同于传统电源,其输出功率的随机性和间歇性,传统规划方法中,视电源具有恒定输出功率的处理方法已不再适用,特别是对于风力发电机组和太阳能光伏发电机组等受环境影响巨大的分布式电源,要根据分布式电源的类型、参数及环境特点,建立相应的随机出力模型和提出与之相适应的处理方法。
技术实现思路
为了克服上述现有技术的不足,本专利技术提供一种分布式电源的优化选址与定容方法,以网络损耗最小和延缓投资效益最大作为目标优化函数,采用两步式优化方法求取分布式电源接入配电网的接入位置和安装容量,充分体现了分布式电源接入对配电网的积极作用,且可用于从扩容作用方面评价分布式电源接入配电网的经济效益。为了实现上述专利技术目的,本专利技术采取如下技术方案:提供一种分布式电源的优化选址与定容方法,所述方法包括以下步骤:步骤1:建立分布式电源选址定容的多目标优化模型;步骤2:明确多目标优化模型的约束条件;步骤3:建立分布式电源随机出力模型,并对其进行处理;步骤4:建立负荷随机出力模型;步骤5:进行分布式电源的选址和定容。所述分布式电源包括燃料电池、微型燃气轮机、往复式发电机、风力发电机组和光伏发电机组。所述步骤1包括以下步骤:步骤1-1:求取配电网的网络损耗最小值;即相对于现有配电网,分布式电源接入后,配电网的网络损耗减少量最大,有:式中,ΔPloss为配电网的网损减少量,Ploss为未接入分布式电源时配电网的网络损耗;N为配电网中的总母线数量;Ib为第b条支路上流过的电流;Rb为第b条支路的电阻;步骤1-2:求取分布式电源产生的延缓投资效益最大值;对于某个给定容量的供电支路,在已知负荷增长速度的情况下,可确定该支路的扩容时间:式中,为支路i的容量;Pi为流经支路i的负荷功率;ωi为负荷的年增长率;τi为扩容时间,且有假设均采用相同型号的设备对支路进行扩容,且投资费用相同,则可将其扩容投资的折现值表示为:式中,Mipv为扩容投资的折现值,Mi是支路i的扩容投资;r为折现率;在现有的负荷水平下,配电网接入分布式电源,扩容时间延长,有式中,为由于分布式电源注入有功功率而产生的新的扩容时间,PiDG为节点i处的分布式电源安装容量,此时,则扩容投资的折现值为:式中,为由于分布式电源注入有功功率而产生的新的投资折现值;由于则延缓投资年限为式中,ΔT为延缓投资年限,此时,分布式电源接入支路i后产生的延缓投资效益为:若在节点i接入分布式电源,受支路容量约束,对节点i的上游支路有式中,Φk为支路k的下游支路集合;节点k为节点i的上游节点;为对应支路k的支路容量;PLj为在节点j接入的负荷容量;将式(10)中的PDGi移动到方程左边,得到由式(11)可知,分布式电源的扩容作用为在分布式电源接入点的所有上游支路中,均产生分布式电源接入容量大小的扩充容量;当网络中仅接入单个分布式电源时,假设其接入位置为i,此时,该分布式电源产生的延缓投资效益为式中,MiDG为在节点i接入分布式电源后产生的投资延缓效益;ΦF为节点i的上游支路集合;c为分布式电源投资年限内资金等年值系数;Mkbenifit为上游支路k因分布式电源接入产生的延缓投资效益;在配电网中接入多个分布式电源后,多个分布式电源的扩容作用同时作用于处在其上游的支路上,分摊到每年的延缓投资效益为:式中,MDG为分布式电源接入后分摊到每年的延缓投资效益;Mibenifit为支路i的延缓投资效益;ΦL为网络中所有支路的集合;步骤1-3:建立分布式电源选址定容的多目标优化函数;多目标优化函数表达式为:maxC=k1Mloss+k2MDG(14)式中,C为分布式电源接入后网络损耗减小产生的经济效益和分摊到每年的投资延迟效益决定的配电网总成本,k1、k2为权重系数,且k1+k2=1;Mloss为分布式电源接入后网络损耗减小产生的经济效益,且有...
一种分布式电源的优化选址与定容方法

【技术保护点】
一种分布式电源的优化选址与定容方法,其特征在于:所述方法包括以下步骤:步骤1:建立分布式电源选址定容的多目标优化模型;步骤2:明确多目标优化模型的约束条件;步骤3:建立分布式电源随机出力模型,并对其进行处理;步骤4:建立负荷随机出力模型;步骤5:进行分布式电源的选址和定容。

【技术特征摘要】
1.一种分布式电源的优化选址与定容方法,其特征在于:所述方法包括以下步骤:步骤1:建立分布式电源选址定容的多目标优化模型;步骤2:明确多目标优化模型的约束条件;步骤3:建立分布式电源随机出力模型,并对其进行处理;步骤4:建立负荷随机出力模型;步骤5:进行分布式电源的选址和定容;所述步骤1包括以下步骤:步骤1-1:求取配电网的网络损耗最小值;即相对于现有配电网,分布式电源接入后,配电网的网络损耗减少量最大,有:式中,ΔPloss为配电网的网损减少量,Ploss为未接入分布式电源时配电网的网络损耗;N为配电网中的总母线数量;Ib为第b条支路上流过的电流;Rb为第b条支路的电阻;步骤1-2:求取分布式电源产生的延缓投资效益最大值;对于某个给定容量的供电支路,在已知负荷增长速度的情况下,可确定该支路的扩容时间:式中,Pimax为支路i的容量;Pi为流经支路i的负荷功率;ωi为负荷的年增长率;τi为扩容时间,且有假设均采用相同型号的设备对支路进行扩容,且投资费用相同,则可将其扩容投资的折现值表示为:式中,Mipv为扩容投资的折现值,Mi是支路i的扩容投资;r为折现率;在现有的负荷水平下,配电网接入分布式电源,扩容时间延长,有式中,为由于分布式电源注入有功功率而产生的新的扩容时间,PiDG为节点i处的分布式电源安装容量,此时,则扩容投资的折现值为:式中,为由于分布式电源注入有功功率而产生的新的投资折现值;由于则延缓投资年限为式中,ΔT为延缓投资年限,此时,分布式电源接入支路i后产生的延缓投资效益为:若在节点i接入分布式电源,受支路容量约束,对节点i的上游支路有式中,Φk为支路k的下游支路集合;节点k为节点i的上游节点;为对应支路k的支路容量;PLj为在节点j接入的负荷容量;将中的PiDG移动到方程左边,得到由上式可知,分布式电源的扩容作用为在分布式电源接入点的所有上游支路中,均产生分布式电源接入容量大小的扩充容量;当网络中仅接入单个分布式电源时,假设其接入位置为i,此时,该分布式电源产生的延缓投资效益为式中,MiDG为在节点i接入分布式电源后产生的投资延缓效益;ΦF为节点i的上游支路集合;c为分布式电源投资年限内资金等年值系数;Mkbenifit为上游支路k因分布式电源接入产生的延缓投资效益;在配电网中接入多个分布式电源后,多个分布式电源的扩容作用同时作用于处在其上游的支路上,分摊到每年的延缓投资效益为:式中,MDG为分布式电源接入后分摊到每年的延缓投资效益;Mibenifit为支路i的延缓投资效益;ΦL为网络中所有支路的集合;步骤1-3:建立分布式电源选址定容的多目标优化函数;多目标优化函数表达式为:maxC=k1Mloss+k2MDG式中,C为分布式电源接入后网络损耗减小产生的经济效益和分摊到每年的投资延迟效益决定的配电网总成本,k1、k2为权重系数,且k1+k2=1;Mloss为分布式电源接入后网络损耗减小产生的经济效益,且有式中,p为单位电价;I为四个季度;h为每个季度典型日的24个时段;Δpiloss.h为分布式电源接入后对应时段的网络损耗减少量;所述分布式电源随机出力模型包括光伏发电机组随机出力模型和风力发电机组随机出力模型;步骤3具体包括以下步骤:步骤3-1:建立光伏发电机组随机出力模型;光伏发电的输出功率受到光照强度影响,在定时间段内,太阳光照强度近似看作是Beta分布,其概率密度函数f(r)表示为:式中,γ是定时间段内的实际光强;γmax是定时间段内的最大光强,且满足α和β分别是Beta分布的形状参数,且满足β≥0,α≥0,根据下式计算:μ和σ分别为定时间段内太阳光照强度的平均值和标准方差;光伏发电机组的输出功率表示为:Pv=r*A*η式中,Pv是光伏发电机组的输出功率;r是太阳光照强度;A为光伏阵列的安装面积;η为光伏发电的转换效率;步骤3-2:建立风力发电机组随机出力模型;风力发电机组的输出功率主要受到风速的影响,在定时间段内,认定风速近似服从两参数威布尔分布,其风速概率密度函数f(v)表示为:式中,k为形状参数;c为尺度参数,v为风速;形状参数k和尺度参数c均根据现场实测风速的历史数据采用最小二乘法辨识,表示为:式中,vr和σw分别为平均风速与风速标准差;风速的分布函数F(v)表示为:当风力发电机组在介于vr和vi之间的风速下运行,风力发电机组输出功率与风速之间的关系近似为线性关系,则风力发电机组的输出功率Pw(v)与风速v之间的关系式为:式中,vi、vr和vo分别为风力发电机组的切入风速、平均风速和切出风速,Prated为分布式电源的额定出力;步骤3-3:基于风力发电机组随机出力模型和光伏发电机组随机出力模型,对风力发电机组和光伏发电机组随机出力进行处理;具体包括以下步骤:1)获取区域内长期累计的风速及光照强度实...

【专利技术属性】
技术研发人员:刘苑红陈颖陈海赵明欣刘思革刘伟苏剑张磐于建成王旭东
申请(专利权)人:国家电网公司中国电力科学研究院天津市电力公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1