基于分布式协同学习的人体运动跟踪方法技术

技术编号:8959663 阅读:171 留言:0更新日期:2013-07-25 19:13
本发明专利技术公开了一种基于分布式学习的人体运动跟踪方法,主要解决现有技术训练所需硬件成本高,训练时间长,对大数据集无力的问题。其实现步骤是:(1)将视频分割成帧图像并从图像中提取人体部位框图;(2)用描述子提取框图中的人体特征;(3)将提取的特征用随机特征映射法映射到由映射向量所组成的空间中;(4)用训练样本的映射向量和真实姿态构成人体运动跟踪的模型,将该人体运动跟踪模型分割成多个子模型;(5)用多个学习机协同求解这多个子模型的公共解,利用该公共解估计测试样本的真实运动姿态。本发明专利技术与传统的人体运动跟踪方法相比,在达到相同的精度的前提下,具有硬件成本低,训练时间短的优点,可用于运动捕获、人机交互及视频监控。

【技术实现步骤摘要】

本专利技术属于计算机视觉及视频图像处理
,主要涉及视频人体运动跟踪和三维姿态恢复,可用于运动捕获、人机交互及视频监控。
技术介绍
视频人体运动跟踪是近二十年内计算机视觉领域的重大热点之一,人物是核心的内容,反映着图像的核心语义特征。此类技术已在运动捕获,人机交互,视频监控等多领域获得了初步的应用,并具重大的应用前景。对视频人体运动跟踪的理解和解译属于视频图像处理范畴,还涉及模式识,别机器学习及信号处理,等众多学科。三维人体运动跟踪和姿势恢复一系列的研究是计算机视觉领域一个长期存在,重要而距离彻底解决尚很遥远的问题。对人类来说,观看一幅图像时几乎可以瞬间理解其中人物的姿态;然而对于计算机来说,这种理解需要克服重重困难,必需要一种有效的图像特征表征其中的人物运动状态以及图像纹理,轮廓等细节信息,作为计算机的识别接口。在运动跟踪过程中,需要将运动跟踪判定方法和图像特征表示结合使用达到对人体的运动跟踪和三维姿势恢复。现有的运动跟踪中使用的跟踪判定方法大致可分为产生式和判别式。图像特征表示方法大致可以分为基于全局特征点方法和基于局部字码表的特征表示方法,如梯度直方特征H0G、层级化特征本文档来自技高网...

【技术保护点】
一种基于分布式学习的人体运动跟踪方法,包括如下步骤:(1)输入待处理的真实姿态已知的训练视频和测试视频,并将其转换为连续单幅序列图,根据图像内容确定需要识别的主要人体目标图像区域,并用矩形框体将其提取出,再将由训练视频得到的和由测试视频得到的图像区域的大小统一转换为近似于人体运动比例的64×192像素的初始图像,分别作为训练样本和测试样本,训练样本的真实姿态用姿态矩阵表示,其中Ntrain是训练样本的个数,E是真实姿态的维数;(2)利用HoG描述子或Shift描述子,提取训练样本和测试样本的特征,得到训练样本的特征矩阵和测试样本的特征矩阵其中xp表示训练样本的特征向量,p=1,2,...,Nt...

【技术特征摘要】
1.一种基于分布式学习的人体运动跟踪方法,包括如下步骤: (1)输入待处理的真实姿态已知的训练视频和测试视频,并将其转换为连续单幅序列图,根据图像内容确定需要识别的主要人体目标图像区域,并用矩形框体将其提取出,再将由训练视频得到的和由测试视频得到的图像区域的大小统一转换为近似于人体运动比例的64X 192像素的初始图像,分别作为训练样本和测试样本,训练样本的真实姿态用姿态矩阵Fe表示,其中Ntrain是训练样本的个数,E是真实姿态的维数; (2)利用HoG描述子或Shift描述子,提取训练样本和测试样本的特征,得到训练样本的特征矩阵2.根据权...

【专利技术属性】
技术研发人员:韩红甘露郭玉言刘三军祝健飞
申请(专利权)人:西安电子科技大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1