高地应力区地下厂房围岩变形破裂演化测试方法及结构技术

技术编号:8530653 阅读:275 留言:0更新日期:2013-04-04 12:36
本发明专利技术公开了一种高地应力区地下厂房围岩变形破裂演化测试方法及结构,一种高地应力区地下厂房围岩变形破裂演化测试方法,该方法能直接且连续的获取岩体在施工期和运行期也即在开挖前、开挖过程中以及开挖后岩体破损区弹性波、裂隙、三维应力和变形等时空演化的基础数据,从而为地下厂房洞室围岩支护设计和施工方案优化以及围岩长期灾变预报预警决策提供科学依据。

【技术实现步骤摘要】

本专利技术涉及围岩变形破裂测试
,具体涉及一种高地应力区地下厂房围岩变形破裂演化测试方法及结构
技术介绍
岩石变形破坏在地下工程开挖过程中,尤其是在高应力区或应力集中区,由于围岩应力释放,岩石呈现出多种多样的变形破裂方式。随着人类社会的发展,已有越来越多的工程建设在深部地下开展,应力水平也有很大程度的提高,如水利水电工程的引水隧洞和地下厂房、交通工程中的深埋隧洞、矿山工程中的深部开采、能源贮备和核废料深部处置中的洞室等。这些高地应力区地下工程面临着一个共同的问题是需要对高应力区岩体进行开挖,由于受到高地应力的作用,岩体开挖过程中的变形破坏比浅部工程要剧烈复杂得多,如果施工速度过快或支护不恰当或其他别的因素,轻则造成围岩变形过大,影响结构的正常使用,重则诱发岩爆塌方等地质性灾害,毁坏施工设备,影响地下工程施工的顺利开展。国内外针对高应力区岩石变形破坏的研究,从发生机理、数值分析等方面开展了大量的工作,并取得了一些重要进展。在高应力区岩石支护方法上,现场设计与工程技术人员根据工程地质条件探讨了一些新型的支护方法。然而,针对地下工程的高地应力区岩石变形破坏,最为关键的问题是深入认识岩石变形破坏演化机理,获得岩石灾变发生前后开挖损伤区内岩体弹性波、裂隙、应力、变形随施工进度、随运行时间的变化规律,从而为各个阶段岩石工程措施设计优化提供可靠的理论支撑。现有的测试方法仅有变形监测,对高应力区地下厂房洞室而言,现有方法无法描述破裂演化过程,无法定量的刻画时效破裂演化的特征和规律。
技术实现思路
本专利技术的目的是针对上述技术问题,提供一种高地应力区地下厂房围岩变形破裂演化测试方法,该方法能直接且连续的获取岩体在施工期和运行期也即在开挖前、开挖过程中以及开挖后岩体破损区弹性波、裂隙、三维应力和变形等时空演化的基础数据,从而为地下厂房洞室围岩支护设计和施工方案优化以及围岩长期灾变预报预警决策提供科学依据。为实现此目的,本专利技术所设计的高地应力区地下厂房围岩变形破裂演化测试方法,该方法包括如下步骤步骤1:在高地应力区地下厂房洞室区域通过廊道向主厂房和主变室方向分别开设摄像与声波测试孔、分布式光纤位移测试孔和三维应力测试孔;步骤2 :在摄像与声波测试孔内灌注第一耦合剂,然后在灌注了第一耦合剂的摄像与声波测试孔内同轴布置数字钻孔摄像仪,在摄像与声波测试孔内通过数字钻孔摄像仪获取摄像与声波测试孔孔口至摄像与声波测试孔孔底的图像,将该图像进行数字化处理后得到岩体裂隙的产状、宽度,然后取出数字钻孔摄像仪,并向摄像与声波测试孔内同轴布置单发双收的单孔声波仪,在摄像与声波测试孔内通过单发双收的单孔声波仪测试摄像与声波测试孔孔底至摄像与声波测试孔孔口的岩体的声波信号,并通过该声波信号,得到开挖前后、开挖过程中岩体弹性波的变化;步骤3 :在步骤2进行的同时,在分布式光纤位移测试孔内同轴布置分布式光纤,然后在分布式光纤位移测试孔内灌注第二耦合剂,在分布式光纤位移测试孔内通过分布式光纤测量分布式光纤位移测试孔轴向的岩体应变,并根据量测数据计算岩体变形以及裂缝开度;步骤4 :在步骤2和3进行的同时,在三维应力测试孔内自三维应力测试孔底端往顶端均匀并排布置多个三向应变计,然后在三维应力测试孔内灌注第二耦合剂,在三维应力测试孔内通过三向应变计监测三维应力测试孔所在范围的岩体应力随各工期的变化规律。所述第一耦合剂为水,第二耦合剂为水泥砂浆,所述步骤2中,从摄像与声波测试孔内取出数字钻孔摄像仪后的15 30分钟之内向该摄像与声波测试孔内设置单发双收的单孔声波仪。上述方案中,它包括多组测试孔,所述每组测试孔均由步骤I中的摄像与声波测试孔、分布式光纤位移测试孔和三维应力测试孔构成。所述每组测试孔中均包括四个摄像与声波测试孔,所述四个摄像与声波测试孔位于同一铅直平面上,朝向主厂房布置的两个摄像与声波测试孔与廊道水平面的夹角分别为15°和45° ;朝向主变室布置的两个摄像与声波测试孔与廊道水平面的夹角分别为20°和50。。所述每组测试孔中均包括多个分布式光纤位移测试孔和三维应力测试孔,所述同一组的分布式光纤位移测试孔和三维应力测试孔位于同一铅直面上,所述分布式光纤位移测试孔和三维应力测试孔分别与廊道在水平面上成7(Γ80度的夹角。 上述技术方案中,位于主厂房上方的摄像与声波测试孔的底部距主厂房拱顶上方的距离为O. Γ0. 6m,位于主厂房边墙内侧的摄像与声波测试孔的底部距主厂房边墙的距离为O. Γ0. 6m ;位于主变室上方的摄像与声波测试孔的底部距主变室拱顶上方的距离为O. 4、. 6m,位于主变室边墙内侧的摄像与声波测试孔的底部距主变室边墙的距离为O. 4^0. 6m。上述技术方案中,位于主厂房上方的分布式光纤位移测试孔和三维应力测试孔的底部距主厂房拱顶上方的距离均为O. Γ0. 6m,位于主厂房边墙内侧的分布式光纤位移测试孔和三维应力测试孔的底部距主厂房边墙的距离为O. Γ0. 6m ;位于主变室上方的分布式光纤位移测试孔和三维应力测试孔的底部距主变室拱顶上方的距离为O. Γ0. 6m,位于主变室边墙内侧的分布式光纤位移测试孔和三维应力测试孔的底部距主变室边墙的距离为 O. 4 O. 6mο一种高地应力区地下厂房围岩变形破裂演化测试结构,其特征在于它包括廊道、主厂房和主变室,所述廊道向主厂房和主变室方向分别开设摄像与声波测试孔、分布式光纤位移测试孔和三维应力测试孔,所述摄像与声波测试孔内灌注第一耦合剂;所述分布式光纤位移测试孔和三维应力测试孔内灌注第二耦合剂,分布式光纤位移测试孔内同轴布置分布式光纤,三维应力测试孔内自三维应力测试孔的底端往顶端均匀布置多个三向应变计;它还包括能与摄像与声波测试孔同轴布置的数字钻孔摄像仪和单发双收的单孔声波仪。所述分布式光纤位移测试孔和三维应力测试孔有多个,且每个分布式光纤位移测试孔和三维应力测试孔均为倾斜布置,所述同一倾角的分布式光纤位移测试孔和三维应力测试孔为平行布置,且相距O. 5^1. 5m,廊道底板离主厂房或主变室的顶拱高程距离应不低于 10m。由于采用了以上技术方案,本专利技术的积极效果和优点在于I)由于从廊道向地下厂房预设了用于监测的长观测孔且预埋了测试仪器,从而可以直接、实时且连续测试获得地下厂房在施工期和运行期间围岩应力、变形破裂的初始孕育信息和长期演变等时空基础数据;若两洞室先后开挖,则可监测先开挖洞室分层开挖全过程信息及其对后开挖洞室的影响;若同时开挖,则可监测两者的相互影响;根据对测试 结果的解译可对施工期和运行期洞室围岩进行预报预警。2)本专利技术采用了分布式光纤测量变形,与多点位移计或滑动测微计相比,它具有分布式、长距离、实时性、精度高和耐久性长等特点,能做到地下洞室围岩的每一个部位具有像人的神经系统一样进行感知和远程监测能力,且采样点间隔显著减小,可达到厘米级,做到了空间和时间上的连续数据采集,且在测试中设置一段自由分布式光纤可以进行温度补偿,以避免温度变化对位移测量造成的误差。3)本专利技术采用了三向应变计测量厂房分层开挖不同时期不同位置围岩地应力的初始值和变化值,对破坏区、开挖损伤区、开挖扰动区三维应力大小及方向变化的监测可以预测围岩变形破坏的模式和破裂面发展变化的趋势,为支护优化提供可靠的本文档来自技高网...

【技术保护点】
一种高地应力区地下厂房围岩变形破裂演化测试方法,该方法包括如下步骤:步骤1:在高地应力区地下厂房洞室区域通过廊道(1)向主厂房(5)和主变室(4)方向分别开设摄像与声波测试孔(2)、分布式光纤位移测试孔(3)和三维应力测试孔(6);步骤2:在摄像与声波测试孔(2)内灌注第一耦合剂,然后在灌注了第一耦合剂的摄像与声波测试孔(2)内同轴布置数字钻孔摄像仪(13),在摄像与声波测试孔(2)内通过数字钻孔摄像仪(13)获取摄像与声波测试孔(2)孔口至摄像与声波测试孔(2)孔底的图像,将该图像进行数字化处理后得到岩体(10)裂隙的产状、宽度,然后取出数字钻孔摄像仪(13),并向摄像与声波测试孔(2)内同轴布置单发双收的单孔声波仪(11),在摄像与声波测试孔(2)内通过单发双收的单孔声波仪(11)测试摄像与声波测试孔(2)孔底至摄像与声波测试孔(2)孔口的岩体(10)的声波信号,并通过该声波信号,得到开挖前后、开挖过程中岩体弹性波的变化;步骤3:在步骤2进行的同时,在分布式光纤位移测试孔(3)内同轴布置分布式光纤(8),然后在分布式光纤位移测试孔(3)内灌注第二耦合剂,在分布式光纤位移测试孔(3)内通过分布式光纤(8)测量分布式光纤位移测试孔(3)轴向的岩体应变,并根据量测数据计算岩体(10)变形以及裂缝开度;步骤4:在步骤2和3进行的同时,在三维应力测试孔(6)内自三维应力测试孔(6)底端往顶端均匀并排布置多个三向应变计(14),然后在三维应力测试孔(6)内灌注第二耦合剂,在三维应力测试孔(6)内通过三向应变计(14)监测三维应力测试孔(6)所在范围的岩体(10)应力随各工期的变化规律。...

【技术特征摘要】
1.一种高地应力区地下厂房围岩变形破裂演化测试方法,该方法包括如下步骤 步骤1:在高地应力区地下厂房洞室区域通过廊道(I)向主厂房(5)和主变室(4)方向分别开设摄像与声波测试孔(2)、分布式光纤位移测试孔(3)和三维应力测试孔(6); 步骤2 :在摄像与声波测试孔(2)内灌注第一耦合剂,然后在灌注了第一耦合剂的摄像与声波测试孔(2)内同轴布置数字钻孔摄像仪(13),在摄像与声波测试孔(2)内通过数字钻孔摄像仪(13)获取摄像与声波测试孔(2)孔口至摄像与声波测试孔(2)孔底的图像,将该图像进行数字化处理后得到岩体(10)裂隙的产状、宽度,然后取出数字钻孔摄像仪(13),并向摄像与声波测试孔(2)内同轴布置单发双收的单孔声波仪(11),在摄像与声波测试孔(2)内通过单发双收的单孔声波仪(11)测试摄像与声波测试孔(2)孔底至摄像与声波测试孔(2)孔口的岩体(10)的声波信号,并通过该声波信号,得到开挖前后、开挖过程中岩体弹性波的变化; 步骤3 :在步骤2进行的同时,在分布式光纤位移测试孔(3)内同轴布置分布式光纤(8),然后在分布式光纤位移测试孔(3)内灌注第二耦合剂,在分布式光纤位移测试孔(3)内通过分布式光纤(8)测量分布式光纤位移测试孔(3)轴向的岩体应变,并根据量测数据计算岩体(10)变形以及裂缝开度; 步骤4 :在步骤2和3进行的同时,在三维应力测试孔(6)内自三维应力测试孔(6)底端往顶端均匀并排布置多个三向应变计(14),然后在三维应力测试孔(6)内灌注第二耦合剂,在三维应力测试孔(6 )内通过三向应变计(14 )监测三维应力测试孔(6 )所在范围的岩体(10 )应力随各工期的变化规律。2.根据权利要求1所述的高地应力区地下厂房围岩变形破裂演化测试方法,其特征在于所述第一耦合剂为水(12),第二耦合剂为水泥砂浆(9),所述步骤2中,从摄像与声波测试孔(2)内取出数字钻孔摄像仪(13)后的15 30分钟之内向该摄像与声波测试孔(2)内设置单发双收的单孔声波仪(11)。3.根据权利要求1所述的高地应力区地下厂房围岩变形破裂演化测试方法,其特征在于它包括多组测试孔,所述每组测试孔均由步骤I中的摄像与声波测试孔(2)、分布式光纤位移测试孔(3)和三维应力测试孔(6)构成。4.根据权利要求3所述的高地应力区地下厂房围岩变形破裂演化测试方法,其特征在于所述每组测试孔中均包括四个摄像与声波测试孔(2),所述四个摄像与声波测试孔(2)位于同一铅直平面上,朝向主厂房(5 )布置的两个摄像与声波测试孔(2 )与廊道(I)水平面的夹角分别为15°和45° ;朝向主变室(4)布置的两个摄像与声波测试孔(2)与廊道(I)水平面的夹角分别为20°和50°。5.根据权利要求3所述的高地应力区地下厂房围岩变形破裂演化测试方法,其特征在于所述每组测试孔中均包括多个分布式光纤位移测试孔(3)和三维应力测试孔(6),所述同一组的分布式光纤位移测试孔(3)和三维应力测试孔(6)位于同一铅直面上,所述分布式光纤位移测试孔(3)和三维应力测试孔(6)分别与廊道(I)在水平面上成7(Γ80度的夹角。6.根据权利要求1所述的高地应力区地下厂房围岩变形破裂演化测试方法,其特征在于位于主厂房(5)上方的摄像与声波测试孔(2)的底部距主厂房(5)拱顶上方的距离为O.4~0. 6m,位于主厂房(5)边墙内侧的摄像与声波测试孔(2)的底部距主厂房(5)边墙的距离为O. Γο. 6m ;位于主变室(4)上方的摄像与声波测试孔(2)的底部距主变室(4)拱顶上方的距离为O. 4^0. 6m,位于主变室(4)边墙内侧的摄像与声波测试孔(2)的底部距主变室(4)边墙的距离为O. 4 O. 6m ; 位于主厂房(5)上方的分布式光纤位移测试孔(3)和三维应力测试孔(6)的底部距主厂...

【专利技术属性】
技术研发人员:丁秀丽黄书岭邬爱清段海波
申请(专利权)人:长江水利委员会长江科学院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1