一种用于原子自旋器件稳定的原子自旋SERF态的精密操控方法技术

技术编号:8270664 阅读:735 留言:0更新日期:2013-01-31 02:36
一种用于原子自旋器件稳定的原子自旋SERF态的精密操控方法,首先对原子自旋SERF态建立精确的方程并采取调制法测量原子自旋极化率建立控制目标,然后基于SERF模型建立尽量精确的控制系统模型并采用参数辨识的办法估计模型中的未知参数,最后根据控制目标,充分利用所建立的模型的特殊结构设计控制律即优化激光的开关时间、频率、方位、功率以及调制磁场的开关时间,借鉴量子控制算法对原子自旋SERF态进行实时精密操控。本发明专利技术提高了原子自旋弛豫时间,解决基于原子自旋SERF效应的原子器件如原子自旋陀螺仪、原子磁强计的刻度因子不稳定性问题,可用于提高基于SERF原子自旋器件的长时间漂移精度和低频灵敏度。

【技术实现步骤摘要】
本专利技术涉及一种基于SERF原子器件稳定的原子自旋SERF (无自旋交换弛豫)态的精密操控方法,可用于提高基于SERF原子器件如原子自旋陀螺仪、原子磁强计的刻度因子的稳定性、长时间漂移精度和低频灵敏度。
技术介绍
基于SERF原子器件如原子自旋陀螺仪、原子磁强计以其具有超高精度、理论性能大幅超越现有陀螺仪、磁强计水平的特性得到了世界各国的重视,引起了该领域的研究热潮。原子自旋SERF态的实现是基于SERF原子器件的关键技术。原子自旋SERF态在光场、磁场、热场等多物理场的干扰下易发生退极化效应,但目前,由于基于SERF原子器件如原子自旋陀螺仪、原子磁强计的研究刚刚起步,原子自旋SERF态的控制还处于开环控制,没 有进行稳定性控制,原子自旋SERF态很容易发生退极化效应,这不仅降低基于SERF原子器件的灵敏度,器件的刻度因子也会因SERF态的退极化导致电子极化率变化而稳定性降低,这必将导致基于SERF原子器件的长时间漂移精度降低、低频性能变差,限制其在某些领域的应用。
技术实现思路
本专利技术的技术解决问题是克服现有技术的不足,提供一种用于基于SERF原子器件稳定的原子自旋SERF态的精密操控方法,用于提高基于原子自旋SERF效应的原子器件刻度因子稳定性,从而提高原子器件的精度。本专利技术的技术解决方案为一种用于原子器件稳定的原子自旋SERF态的精密操控方法,首先对原子自旋SERF态建立精确的模型并采取调制法测量原子自旋极化率建立控制目标,然后基于SERF模型建立尽量精确的控制系统模型并采用参数辨识的办法估计模型中的未知参数,最后根据控制目标,充分利用所建立的模型的特殊结构设计控制律即优化激光的开关时间、频率、方位、功率以及调制磁场的开关时间等,借鉴量子控制算法对原子自旋SERF态进行实时精密操控,具体步骤如下(I)建立原子自旋SERF态系统模型。以量子统计力学为基础,利用原子自旋交互碰撞电磁力作用下的原子碰撞散射计算方法,建立刘维尔密度矩阵演化方程,在此基础上,采用Bloch方程建立原子自旋SERF态系统模型。(2)根据原子自旋SERF态的动力学特性,采用磁场调制法测量原子自旋极化率。其步骤为(2. I)采用迅速开断抽运激光(原子磁强计中因只有碱金属电子而无惰性气体核子可以省略此步骤使抽运激光一直保持打开状态即可)保证只有碱金属电子被极化而核自旋仍处于杂乱无章的自然状态。此时原子自旋陀螺仪的动力学方程可简化为原子磁强计动力学方程如下本文档来自技高网...

【技术保护点】
一种用于原子自旋器件稳定的原子自旋SERF态的精密操控方法,其特征在于包括以下步骤:(1)建立原子自旋SERF(无自旋交换弛豫)态方程利用原子自旋交互碰撞电磁力作用下的原子碰撞散射计算方法,建立刘维尔密度矩阵演化方程:其中ρ为原子系统在空间的密度,RSE为原子自旋交换碰撞时间,ROP为原子的光抽运率,为原子的极化率,为原子的极化方向;H为哈密顿量,φ为原子通量,为普朗克常数,为数学求梯度,D为数学求导数;在此基础上,采用Bloch方程建立原子自旋SERF态系统方程:ddtS→=1q[γeB×S→+ROP(12s→-S→)-RrelS→]其中,q为核自旋衰减系数,γe为电子自旋的旋磁比,Rrel为电子的自旋弛豫率;B为原子感受的磁场;(2)根据原子自旋SERF态的动力学特性,采用磁场调制法测量原子自旋极化率;(3)根据原子自旋SERF态系统方程和所需的原子自旋极化率建立原子自旋SERF态的控制系统模型其中ρn为原子系统在空间的密度,TKS为电子-核子自旋交换碰撞弛豫时间,TSDn为核子自旋碰撞时间,为电子极化率,[X]为核子的密度,кKS为增益常数,ge、gn为电子、核子的g因子,μB、μn为电子、核子的玻尔电 子磁矩、质子磁矩,ROP为原子的光抽运率,为原子的极化方向,a、b、c原子自旋SERF态控制系统模型中的未知参数;其次,根据原子自旋SERF态的控制系统模型施加到基于SERF原子自旋器件系统保证原子自旋极化率恒定;然后采用参数辨识的办法估计原子自旋SERF态控制系统模型中的未知参数a、b、c,并采用最优控制、鲁棒控制、自适应、或者自抗扰的控制策略解决原子自旋SERF态控制系统量子量测结构的不确定性;(4)利用步骤(3)所建立的原子自旋SERF态系统控制模型设计控制律,优化磁场调制的开关时间,开通磁场调制测量原子自旋极化率并停止原子器件的角速度和磁场测量,当原子自旋极化率偏离目标值时,调节激光的频率、方位及功率保证原子极化率回归目标值;当原子自旋极化率回归到目标值后再断开磁场调制进行原子器件角速度和磁场测量。FDA00002263671500011.jpg,FDA00002263671500012.jpg,FDA00002263671500013.jpg,FDA00002263671500014.jpg,FDA00002263671500015.jpg,FDA00002263671500017.jpg,FDA00002263671500018.jpg,FDA00002263671500021.jpg...

【技术特征摘要】
1.一种用于原子自旋器件稳定的原子自旋SERF态的精密操控方法,其特征在于包括以下步骤 (1)建立原子自旋SERF(无自旋交换弛豫)态方程 利用原子自旋交互碰撞电磁力作用下的原子碰撞散射计算方法,建立刘维尔密度矩阵演化方程2.根据权利要求I所述的原子自旋SERF态的精密操控方法...

【专利技术属性】
技术研发人员:房建成万双爱秦杰陈瑶李茹杰全伟
申请(专利权)人:北京航空航天大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1