当前位置: 首页 > 专利查询>河海大学专利>正文

一种基于贝叶斯推断的软件服务质量监控方法及系统技术方案

技术编号:8190904 阅读:285 留言:0更新日期:2013-01-10 01:49
本发明专利技术公开一种基于贝叶斯推断的软件服务质量动态监控方法及系统,设定原假设与备择假设,选取先验分布函数,读取训练样本,对训练样本进行预处理,统计满足属性的样本数,更新样本集;对样本总数,成功样本数,标准值整形;计算贝叶斯因子,分析、存储并返回监控结果。系统包括:控制器,采集软件的服务声明标准,产生不同任务目的分析器,传递需匹配的服务标准给分析器,向数据采集端发布指令,控制周期性采集;观察器从数据服务设备端周期采集所需的服务数据,对信息进行筛分分类重组;分析器,数据进行匹配,形成可预处理样本,传入历史数据库保存;采用贝叶斯统计模块分析数据,结果存入监控结果数据库。

【技术实现步骤摘要】

本专利技术涉及一种对运行软件QoS需求指标监控的方法和系统,尤其涉及ー种基于贝叶斯推断的软件服务质量监控方法及系统,属于软件服务质量监控

技术介绍
近年来,软件系统越来越要求具有较高的动态性和灵活性,能够动态组合开放环境下使用分布、自治的第三方组件,并支持软件运行时的不断演化。然而在复杂多变的Internet环境中,这种对于第三方服务的依赖会带来不确定的问题,比如服务组件接ロ变化,动态选择发生变化,组件自身变化,又或者如果各个组件提供的功能或者非功能特性与预先声明不同,都会产生严重影响,无法满足QoS (Quality of Service)需求。因此需要采 用运行时的监控技术对其进行监管以确保软件执行的正确性,提高软件的可信度。QoS的关键指标如可用性、吞吐量、时延、时延变化(包括抖动和漂移)和丢失等通常用概率来表示不确定性,但很多时候分析和评估QoS指标时,很难给出确切的特征量估计值,而采用模糊语言,例如“程序在0. 2s内响应的概率为95%”,“数据丢包率小于万分之三”等等,保证系统可靠运行需要对这些不确定的模糊概率进行监控诊断。然而,现有的概率监控方法采用传统假设本文档来自技高网...

【技术保护点】
一种基于贝叶斯推断的软件服务质量监控方法,其特征在于,包括以下步骤:步骤1,根据可靠性标准,设定原假设H0与备择假设H1;其中,原假设和备择假设必须互斥,接受一方,必须拒绝另一方;根据可靠性标准,建立对立的原假设H0与备择假设H1:H0:p≥θ“;H1:p<θ“;步骤2,选取先验分布函数;具体为:如有充足的先验信息,利用历史日志中以往软件运行的服务质量数据,分析数据特性来形成先验分布函数g(θ);根据监控仿真实验特性,引入二项分布的自然共轭先验分布,即贝塔分布,通过设定两个不同的参数a和b来拟合[0,1]区间上g(θ),其概率密度分布函数:∀u∈(0,1),g(u...

【技术特征摘要】

【专利技术属性】
技术研发人员:张鹏程朱跃龙徐美君
申请(专利权)人:河海大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1