伺服控制岩体真三轴试验装置制造方法及图纸

技术编号:6873751 阅读:184 留言:0更新日期:2012-04-11 18:40
本发明专利技术公开了一种伺服控制高应力岩体真三轴试验装置,包括反力框架、轴压加载系统、围压加载系统、测量及采集控制系统,主要是矩形反力框架内面四周安装液压枕,并套置在现场柱状岩体试样外,柱状岩体试样尺寸范围:长30cm至100cm,宽30cm至100cm,高60cm至150cm,测杆一端设置在柱状岩体试样侧面中心内,测杆另一端穿过反力框架接测量及采集控制系统,液压枕接围压加载伺服控制系统。本装置利用地下洞室现场岩体大尺寸试样、加载液压枕提供高围压,且能承载复杂应力,可独立加载伺服控制获得岩体综合强度。

【技术实现步骤摘要】

本专利技术涉及一种岩体力学试验设备,尤其涉及一种大尺寸、高应力伺服控制岩体真三轴试验的装置。
技术介绍
由于大型地下洞群的规模逐渐增大,所处的地下地质环境也愈加复杂。因此,存在深埋、高地应力条件下,洞群围岩的稳定性状况、破坏形态和破坏机制等问题。现场岩体力学试验是解决这类问题的主要研究方法。当前主要采用直剪试验获取现场岩体强度,直剪试验需要预设剪切面,试验结果只能反映剪切面强度,无法揭示岩体综合强度,直剪试验只能与Mohr-Coulomb等少数强度准则配套,不能考虑中间主应力影响。开展现场岩体三轴试验是了解岩体综合强度的有效途径。从参考文献可知,长江科学院于1972年在葛洲坝开展了现场岩体三轴试验,中科院武汉岩土力学研究所针对国投新集煤矿区软岩,开展了现场岩体三轴蠕变试验,日本电力工业研究中心利用其自行研制的设备,针对凝灰岩开展了等围压三轴试验。目前已开展的三轴试验岩体试样尺寸小,无法揭示岩体综合强度,与工程岩体实际综合状况相距较大,尺寸效应明显。已开展的现场岩体三轴试验是由千斤顶加载,给试样提供轴压、围压,试样承载的是硬性力,测试岩体综合强度不准确。已开展的现场岩体三轴试验应力水平普遍不高,围压不超过5MPa,且开展的都是等围压试验。
技术实现思路
本专利技术的目的是为了克服现有技术的缺陷,提供一种地下洞室现场岩体大尺寸试样、加载液压枕提供高围压且能承载复杂应力的岩体真三轴试验设备,可独立加载伺服控制获得岩体综合强度。本专利技术解决其技术问题采用以下技术方案一种伺服控制高应力岩体真三轴试验装置,包括反力框架、轴压加载系统、围压加载系统、测量及采集控制系统,主要是矩形反力框架内面四周安装液压枕,并套置在现场柱状岩体试样外,柱状岩体试样尺寸范围长 30cm至100cm,宽30cm至100cm,高60cm至150cm,测杆一端设置在柱状岩体试样侧面中心内,测杆另一端穿过反力框架接测量及采集控制系统,液压枕接围压加载伺服控制系统。而且,围压加载伺服控制系统为计算机接转换器EDC,转换器EDC接伺服阀,伺服阀一端接伺服油源,伺服阀另一端接增压器,增压器接入液压枕。而且,围压加载伺服控制系统分别接柱状岩体试样两对应面的液压枕。而且,矩形反力框架每个内面上下分别安装液压枕,且上下液压枕串联。而且,矩形反力框架内面每对液压枕对柱状岩体试样加载最高围压25MPa。而且,测量及采集控制系统为测杆接径向变形测表,径向变形测表接入计算机。本专利技术与现有技术相比还具有以下的主要优点1、利用现场岩体做成柱状大尺寸试样,反力框架套置柱状岩体试样,克服试验台架的刚度及出力问题,现场岩体大尺寸试样试验全面揭示岩体综合强度,避免样品尺寸小与工程岩体相距较大而产生的尺寸效应。2、通过矩形体反力框架四周内面安装液压枕,并内套置柱状岩体试样,液压枕对柱状岩体试样可进行高围压加载试验,而且,液压枕对柱状岩体试样加载均勻柔和应力,使试验岩体综合强度结果更趋于准确。3、液压枕对柱状岩体试样施加围压,液压枕接围压加载伺服控制系统,通过二套围压加载伺服控制系统独立控制柱状岩体试样对应面的围压,由于接入伺服阀,控制增压器可以试验不同围压加载,以揭示岩体综合强度。4、测量及采集控制系统由测杆接变形测表,并接入计算机,从而使测量与采集试验数据由计算机控制,使采集试验数据实时、精确。5、柱状岩体试样尺寸范围长30cm至100cm,宽30cm至100cm,高60cm至150cm,适用于一定范围内变化的样品尺寸,也可在实验室做岩体真三轴压缩试验,扩大了试验仪器使用范围,适用范围更广泛。附图说明图1是本专利技术的伺服控制岩体真三轴试验装置示意图。1.洞室岩体面,2、2'、2〃钢垫板,3.传力柱,4.千斤顶,5.油管,6.反力框架, 7.径向变形测表,7'.测杆,8.轴向变形测表,8'.测杆,9、9'.液压枕,10.现场柱状岩体试样,11.增压器,12.伺服阀,13.伺服油源,14.转换器EDC,15.计算机,15'.测量及采集控制系统,12'.围压加载伺服控制系统。具体实施例方式下面结合附图和实施例对本专利技术进一步说明。如图1所示,一种伺服控制高应力岩体真三轴试验装置,由反力框架、轴压加载系统、围压加载系统、测量及采集控制系统组成。利用现场岩体直接做成柱状大尺寸试样,尺寸范围长30cm至100cm,宽30cm至100cm,高60cm至150cm,反力框架(6)做成一定厚度矩形框,反力框架(6)内面四周安装液压枕(9),并套置在柱状岩体试样(10)外,使液压枕 (9)与岩体试样(10)接触,便于两对应面液压枕(9) (9)对岩体试样(10)加载,一套围压加载伺服控制系统(12')单独控制柱状岩体试样(10)侧面的两对应面液压枕(9) (9);每个内面沿中心位置上下安装两个液压枕(9)、(9'),液压枕(9')与液压枕(9)串联,使液压枕(9)、(9')分别与岩体试样(10)接触,便于液压枕(9)、(9‘)对岩体试样(10)加载, 每套围压加载伺服控制系统(12')分别接入柱状岩体试样(10)侧面两对应面液压枕(9) (9)、(9' )(9'),在矩形反力框架(6)四周内面有八对液压枕,每对液压枕对柱状岩体试样(10)四面加载最高围压25MPa,围压加载伺服控制系统(12')由计算机(15)接转换器 EDC (14),转换器EDC (14)接入伺服阀(12),伺服阀(12)通过油管一端接油源(13),另一端接入增压器(11),增压器(11)接液压枕(9)、(9')。柱状大尺寸试样(10)四周侧面中心内置测杆(7'),测杆(7')另一端穿过反力框架(6)接测量及采集控制系统(15'),测量及采集控制系统(15')将测杆(7')由数据线分别接径向变形测表(7),径向变形测表(7)接入计算机(15),计算机(1 分别输出试样四周侧面变形数据。利用现场岩体做成柱状大尺寸试样,便于提供一定范围内变化的样品尺寸,反力框架套置柱状岩体试样,克服试验台架的刚度问题及出力问题,利用现场岩体大尺寸试样试验全面揭示岩体综合强度,避免样品尺寸小与工程岩体相距较大而产生的尺寸效应,也可在实验室做岩体真三轴压缩试验,扩大了试验仪器使用范围。岩体真三轴压缩试验装置,柱状大尺寸试样顶面的钢板( 上设置多个大吨位千斤顶G),千斤顶(4)接轴压控制系统,轴压控制系统单独控制柱状岩体试样顶面轴压加载,轴压控制系统由计算机(15)接转换器EDC(14),转换器EDC(14)接入伺服阀(12),伺服阀(1 通过油管一端接油源(13),另一端控制接入千斤顶(4)的增压器(11),试样顶面测杆(8')接测量及采集控制系统的轴向变形测表(8),轴向变形测表(8)接计算机(15),单独测得试样轴向变形。岩体真三轴压缩试验装置安装完成,开启计算机(15)、转换器EDC(14),启动伺服油源(1 。试验人员将试验指令输入计算机(15),然后开始试验。试验人员的指令由转换器EDC(14)转换为电信号,发送给伺服阀(12),伺服阀(12)依据转换器EDC(14)的指令,将伺服油源(1 提供的压力进行调节,然后将指定压力输送给增压器(11),增压器将伺服阀 (12)的压力放大,然后将放大的压力通过油管( 输送给柱状大尺寸试样径向液压枕本文档来自技高网...

【技术保护点】
1.一种伺服控制高应力岩体真三轴试验装置,包括反力框架、轴压加载系统、围压加载系统、测量及采集控制系统,其特征在于:矩形反力框架(6)内面四周安装液压枕(9),并套置在现场柱状岩体试样(10)外,柱状岩体试样(10)尺寸范围:长30cm至100cm,宽30cm至100cm,高60cm至150cm,测杆(7′)一端设置在柱状岩体试样(10)侧面中心内,测杆(7′)另一端穿过反力框架(6)接测量及采集控制系统(15′),液压枕(9)接围压加载伺服控制系统(12′)。

【技术特征摘要】

【专利技术属性】
技术研发人员:周火明邬爱清郝庆泽张宜虎钟作武李维树韩军赵仁义马东辉熊诗湖孙云志杨汉良王玉明范雷陈强杨宜谢斌庞正江
申请(专利权)人:长江水利委员会长江科学院长春市朝阳试验仪器有限公司
类型:发明
国别省市:83

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1