基于DDPM-YOLO的侧扫声呐图像对抗强化生成方法技术

技术编号:42212740 阅读:61 留言:0更新日期:2024-07-30 18:54
基于DDPM—YOLO的侧扫声呐图像对抗强化生成方法,属于侧扫声纳图像目标识别与扩增和深度学习技术领域。步骤一、对测试集的图像进行数据增强处理,扩增形成第一增强数据集。步骤二、对抗循环训练:利用第一增强数据集训练DDPM和YOLO,得到初始DDPM和初始YOLO。使用训练得到的初始DDPM生成增强图像。增强图像输入到初始YOLO进行检测,设置阈值,筛选出一定图像作为YOLO过滤后的图像集。之后进行数据增强,扩增形成扩散生成数据集。使用扩散生成数据集与第一增强数据集合并,作为第二增强数据集进行下一轮的对抗循环训练。重复迭代,每次迭代通过对抗生成的数据集不断提升模型的检测能力。

【技术实现步骤摘要】

本专利技术属于侧扫声纳图像目标识别与扩增和深度学习,涉及一种基于ddpm-yolo的侧扫声呐图像对抗强化生成方法,通过迭代训练ddpm模型,整合ddpm扩散模型和下游的yolo检索任务到一个相互促进的框架中,提出一种基于ddpm和yolo检测模型的对抗强化训练方法。该方法能够提高侧扫声呐图像扩散模型的生成图质量,为提高水下目标检测模型的构建提供了一种新途径。


技术介绍

1、随着全球海洋开发策略的持续推进,海底地形精确探测的需求日益增长,尤其是在海底目标的识别与探测领域,这对于航海安全、海洋勘察、海上搜救及军事行动等多个领域至关重要。侧扫声呐系统,以其高分辨率的海底声学成像能力,在海底目标识别方面显示出了明显的优势。然而,传统的海底目标识别与探测方法主要依赖于人工判断,这不仅效率低下,耗时长,而且还极度依赖于人的主观判断,暴露出自动化探测方法的重要性。

2、尽管近年来结合机器学习与手工特征分类技术取得了一些进展,但面对复杂的海底环境,这些方法仍显局限,特别是侧扫声呐图像常见的问题如低分辨率、特征匮乏、高噪声及形变等。深度学习技术的应用虽提升了目标本文档来自技高网...

【技术保护点】

1.基于DDPM—YOLO的侧扫声呐图像对抗强化生成方法,其特征在于,步骤如下:

【技术特征摘要】

1.基于ddpm—yolo的侧扫声呐图像...

【专利技术属性】
技术研发人员:金绍华彭程扬张威边刚崔杨
申请(专利权)人:中国人民解放军海军大连舰艇学院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1