【技术实现步骤摘要】
专利
本专利技术的实施例总体上涉及计算机图形学领域。更具体地,本专利技术的实施例涉及使用隐式表示网络从图像重建三维人类头部模型。
技术介绍
0、背景
1、从人脸的单个图像进行三维(3d)人类头部重建,也称为单视图重建(svr),是计算机图形学领域中众所周知的任务,其中人类头部的一个静态图像被用于对突显3d头部参数模型的参数进行回归操作(regressing)。使用经回归的参数,可以生成人类头部网格,以及uv纹理贴图(texture map)和预定义的绑定(rig)以用于动画制作。3d人类头部模型重建可以基于在2d图像中提供的视觉输入来实现对动画角色表情和姿势的完全控制。
2、svr任务可能是复杂的,因为单个二维(2d)图像可能固有地缺乏人脸的3d几何结构(通常称为形状)和其外观(通常称为纹理)的一些信息。从二维(2d)图像进行人类头部的3d重建存在大量的工作。然而,现有技术研究未能生成高质量的3d头部模型。需要从图像进行高质量的3d头部重建。
技术实现思路
0
本文档来自技高网...
【技术保护点】
1.一种用于从第一人脸的输入2D图像重建所述第一人脸的三维3D模型的方法,所述方法包括:
2.根据权利要求1所述的方法,包括通过以下方式训练所述超网络(H):
3.根据权利要求2所述的方法,其中,所述第一损失项包括以下中的一个或更多个:
4.根据权利要求2所述的方法,其中,所述第二损失项包括以下中的一个或更多个:
5.根据权利要求4所述的方法,其中,所述第二人脸的所述规范化3D人脸模型是所述第二人脸的通过关节模型和表情学习的人脸(FLAME)的3D人脸模型。
6.根据权利要求2所述的方法,包括:
...
【技术特征摘要】
1.一种用于从第一人脸的输入2d图像重建所述第一人脸的三维3d模型的方法,所述方法包括:
2.根据权利要求1所述的方法,包括通过以下方式训练所述超网络(h):
3.根据权利要求2所述的方法,其中,所述第一损失项包括以下中的一个或更多个:
4.根据权利要求2所述的方法,其中,所述第二损失项包括以下中的一个或更多个:
5.根据权利要求4所述的方法,其中,所述第二人脸的所述规范化3d人脸模型是所述第二人脸的通过关节模型和表情学习的人脸(flame)的3d人脸模型。
6.根据权利要求2所述的方法,包括:
...
【专利技术属性】
技术研发人员:奥尔·戈罗迪斯基,阿米泰·纳赫马尼,马坦·费尔德曼,伊利安·库塔,吉尔·佩里,萨拉·布朗德海姆,
申请(专利权)人:去识别化有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。