基于多粒度空洞卷积神经网络的图像修复方法技术

技术编号:41745900 阅读:29 留言:0更新日期:2024-06-21 21:32
本发明专利技术公开了基于多粒度空洞卷积神经网络的图像修复方法,该方法首先将数据集划分为训练集和测试集,并进行预处理,构造待修复图像。其次将训练集中待修复图像输入到编码器,得到特征图F<subgt;in</subgt;。然后将特征图F<subgt;in</subgt;输入到多粒度残差模块,提取图像中的多尺度特征图,级联多个多粒度残差模块构成多粒度特征提取模块,得到特征图F<subgt;low</subgt;。最后将特征图F<subgt;low</subgt;输入到两个通道自适应上采样卷积模块中,再输入到一个卷积模块,得到缺失部分填充完整的图像I,并通过图像级损失及特征级损失进行参数优化。本发明专利技术增强了特征提取能力,使得修复后的图像特征更加丰富,并通过自适应像素重排技术提升了填充像素的准确率。

【技术实现步骤摘要】

本专利技术涉及基于深度学习的图像修复领域,尤其涉及一种基于多粒度空洞卷积神经网络的图像修复方法


技术介绍

1、图像修复是一种旨在恢复、修复或改善受损或缺失图像的技术,在数字图像处理、医学影像、安全监控、印刷媒体等领域具有广泛的应用。目前,基于先进的深度学习技术,针对大面积或不规则缺失区域的图像修复得到了极大的提升。pathak等人提出了上下文编码方法,通过像素级重构损失和对抗损失对网络模型进行优化。在此基础上,多种改进方法被提出,例如,由粗糙到精细的两阶段模型。song等人引入额外的辅助信息引导缺失内容的正确修复,例如分割预测,边缘连接和结构重建等信息。与传统方法相比,以上方法更好地处理了具有大面积孔洞的图像修复问题。然而,它们需要训练多个网络,而第一个网络产生的伪影会传播到第二个网络中。

2、针对缺失区域较大的图像修复问题,有效的图像修复方法需要1)能够提取图像中的语义信息,进而生成合理的图像内容;2)保持修复区域边缘的连续性;3)生成清晰有序的纹理信息。然而,已有的图像修复方法对于缺失区域较大的图像,无法根据其深层次的语义信息进行合理的填本文档来自技高网...

【技术保护点】

1.基于多粒度空洞卷积神经网络的图像修复方法,其特征在于,包括以下步骤:

2.根据权利要求1所述的基于多粒度空洞卷积神经网络的图像修复方法,其特征在于,在步骤1中,所述预处理包括:将图像像素值规范化到[-1,1]区间,采用插值方法将图像缩放至统一的空间分辨率;

3.根据权利要求1所述的基于多粒度空洞卷积神经网络的图像修复方法,其特征在于,在步骤2中,所述编码器由三个卷积模块实现,每个卷积模块由卷积层、批标准化层及ReLU激活函数层组成,第一个卷积模块的卷积步长设置为1,第二个和第三个卷积模块的卷积步长设置为2,实现对特征图的降采样。

>4.根据权利要求3...

【技术特征摘要】

1.基于多粒度空洞卷积神经网络的图像修复方法,其特征在于,包括以下步骤:

2.根据权利要求1所述的基于多粒度空洞卷积神经网络的图像修复方法,其特征在于,在步骤1中,所述预处理包括:将图像像素值规范化到[-1,1]区间,采用插值方法将图像缩放至统一的空间分辨率;

3.根据权利要求1所述的基于多粒度空洞卷积神经网络的图像修复方法,其特征在于,在步骤2中,所述编码器由三个卷积模块实现,每个卷积模块由卷积层、批标准化层及relu激活函数层组成,第一个卷积模块的卷积步长设置为1,第二个和第三个卷积模块的卷...

【专利技术属性】
技术研发人员:张新殷昱煜王东京王洪波李尤慧子周丽
申请(专利权)人:杭州电子科技大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1