一种基于交互注意力网络的情感分析方法技术

技术编号:41175314 阅读:21 留言:0更新日期:2024-05-07 22:11
本发明专利技术涉及一种基于交互注意力网络的情感分析方法,首先根据Glove词向量模型对文本以及方面词进行词嵌入,将词语转变为向量,分别得到N*d的文本序列矩阵以及M*d的方面词序列矩阵;然后利用双向LSTM挖掘上下文语义信息,构建文本表示以及方面表示,再将生成的方面与文本表示通过词级别双向注意力模块,得到方面与文本之间以及文本与方面之间的相互作用关系,由得到的相互注意力分数与原文本作用得到最终的文本表示,然后通过分类器,进行情感倾向预测。与现有基线方法相比,本方法具有更好的性能,并且结果优于普通的交互注意力模型。

【技术实现步骤摘要】

本专利技术属于数据自然语言处理中的细粒度情感分析领域,涉及一种基于交互注意力网络的情感分析方法


技术介绍

1、方面词在情感分类中有重要作用,并发展了各种方法,目的是通过生成基于特定方面词的表示来更加准确地建模上下文。然而,之前的研究常常忽略对方面词进行单独的建模,而只有当方面词的表示和上下文表示相匹配才能真正提高情感分类的效果。因此方面词和上下文内容都需要特殊处理,并且需要通过交互地注意力网络学习来学习上下文和方面中的注意力分数,最后分别生成方面和上下文的表示。通过这种设计,交互式注意网络模型能够很好地表示方面及其上下文,有助于情感分类。

2、在交互注意力网络中,虽然已经开始利用注意力机制学习上下文中不同部分与方面之间的关系。它的交互操作是通过将方面序列的隐藏层输出进行池化,然后再与上下文序列的隐藏层输出进行注意力计算;将上下文序列的隐藏层输出进行池化,然后再与方面序列的隐藏层输出进行注意力计算。虽然做到了一定程度的交互,但是大部分方面序列不仅仅是一个单词,如果把方面序列和上下文序列的隐藏层输出直接进行池化,这将损失掉上下文和方面序列的词级别本文档来自技高网...

【技术保护点】

1.一种基于交互注意力网络的情感分析方法,其特征在于:首先根据Glove词向量模型对文本以及方面词进行词嵌入,将词语转变为向量,分别得到N*d的文本序列矩阵以及M*d的方面词序列矩阵;然后利用双向LSTM挖掘上下文语义信息,构建文本表示以及方面表示,再将生成的方面与文本表示通过词级别双向注意力模块,从而得到方面与文本之间以及文本与方面之间的相互作用关系,由得到的相互注意力分数与原文本作用得到最终的文本表示,然后通过分类器,进行情感倾向预测。

【技术特征摘要】

1.一种基于交互注意力网络的情感分析方法,其特征在于:首先根据glove词向量模型对文本以及方面词进行词嵌入,将词语转变为向量,分别得到n*d的文本序列矩阵以及m*d的方面词序列矩阵;然后利用双向lstm挖掘上下文语义信息...

【专利技术属性】
技术研发人员:张硕
申请(专利权)人:北京航天长峰科技工业集团有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1