基于残差收缩网络的声纹阵列识别方法技术

技术编号:41131323 阅读:25 留言:0更新日期:2024-04-30 18:01
本发明专利技术公开了一种基于残差收缩网络的声纹阵列识别方法,包括以下步骤:步骤1,对数据进行预处理;步骤2,对预处理完成的数据进行局部卷积;步骤3,构建残差网络,将局部卷积的卷积特征串联;步骤4,通过残差网络计算收缩阈值,通过收缩阈值限定进行对声纹阵列进行识别。本发明专利技术通过对于改进的全连接多尺度残差网络的时间序列分类,处理了时间序列中时间尺度选择问题;本发明专利技术通过对网络本身的优化更好的对时间序列中的数据进行噪声处理,提高识别和分类精度。

【技术实现步骤摘要】

本专利技术涉及人工智能算法,尤其是指基于残差收缩网络的声纹阵列识别方法


技术介绍

1、声纹识别在电力、电缆施工方面,设备诊断、检修方面,都有广泛的应用。然而,这些应用中,周围环境噪声情况嘈杂,所采集的声纹序列都存在不同程度的噪声干扰。传统ai网络对时间序列进行分类方法可大致分为基于距离的方法,基于特征的方法以及基于深度学习的方法。传统方法需要手动处理特征和人为的选择分类器,深度学习方法没有针对时间序列数据的特点对网络结构进行有效设计,很难取得良好的效果。

2、时间序列数据往往面临着两个问题:时间尺度的选择与噪声干扰。一个良好的时间序列分类算法应该能够捕获不同时间尺度的时间序列数据,因为长期特征反映总体趋势,短期特征反映局部区域的细微变化。同时,时间序列数据又容易受到噪声的干扰而失去意义。能否对时间序列数据进行有效的时间尺度的选择和有效的噪声处理将对时间序列分类效果产生重要影响,目前已有的考虑到时间尺度的时间序列分类算法并不理想,并且很少能够对噪声问题提出有针对的解决方法。


技术实现思路</p>

1、本专本文档来自技高网...

【技术保护点】

1.基于残差收缩网络的声纹阵列识别方法,其特征是,包括以下步骤:

2.根据权利要求1所述的基于残差收缩网络的声纹阵列识别方法,其特征是,所述的步骤1中,预处理的过程包括数据映射、数据平滑滤波和数据采样。

3.根据权利要求2所述的基于残差收缩网络的声纹阵列识别方法,其特征是,所述的数据映射具体为:

4.根据权利要求3所述的基于残差收缩网络的声纹阵列识别方法,其特征是,所述的步骤2具体为:局部卷积从输入时间序列中下采样得到不同长度的多个时间序列,对每个新生成的时间序列应用独立的一维局部卷积;一维局部卷积包括卷积计算和池化计算来提取每个分支的特征;不同分支的...

【技术特征摘要】

1.基于残差收缩网络的声纹阵列识别方法,其特征是,包括以下步骤:

2.根据权利要求1所述的基于残差收缩网络的声纹阵列识别方法,其特征是,所述的步骤1中,预处理的过程包括数据映射、数据平滑滤波和数据采样。

3.根据权利要求2所述的基于残差收缩网络的声纹阵列识别方法,其特征是,所述的数据映射具体为:

4.根据权利要求3所述的基于残差收缩网络的声纹阵列识别方法,其特征是,所述的步骤2具体为...

【专利技术属性】
技术研发人员:顾伟秦建松章立宗丁梁陈浩赵伟苗杨彪殷常斌张金鹏苗伟刘炜汪磊王建军任基铭严铭铭蒋春锋陈岳峰张晓波邬明亮刘安文李勇黄强强陈扬军杨智海崔佳嘉冯新江梁皓魏健陈文浩陶旭东林开福孙局宾张中傅伟栋吴涛张黎捷邢恩恺施光南张继轩董钦沈旭东金钢贺明
申请(专利权)人:国网浙江省电力有限公司双创中心
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1