一种电力使用长期预测方法、系统、设备及介质技术方案

技术编号:40953721 阅读:37 留言:0更新日期:2024-04-18 20:29
本发明专利技术属于电力预测技术领域,为了解决目前电力预测不准确的问题,提出了一种电力使用长期预测方法、系统、设备及介质,将SARIMAX模型对电力使用相关的多源数据分别进行预测,得到对应的电力预测量的浮点值,根据分类模型得到能耗类型,并基于能耗类型得到对应的电力预测使用量的有限空间范围,基于电力预测使用量的有限空间范围和得到的电力预测使用量浮点值的比较,对SARIMAX模型进行优化调整,基于优化调整后的模型进行电力预测;不仅充分利用了电力使用相关的多源数据,而且基于分类模型得到的分类结果对模型进行优化调整,使后续模型的电力预测更为准确。

【技术实现步骤摘要】

本专利技术属于电力预测,尤其涉及一种电力使用长期预测方法、系统、设备及介质


技术介绍

1、本部分的陈述仅仅是提供了与本专利技术相关的
技术介绍
信息,不必然构成在先技术。

2、电力使用长期预测是确保能源供应与需求平衡、优化电网建设和降低碳排放的关键。在以往的长期预测中,主要存在以下问题:1、多源异构数据融合:预测通常涉及多种数据源,例如历史电力使用数据、气象数据(图像)、经济数据、当地gdp、产业结构等。这些数据可能来自不同的系统,有不同的格式和粒度,如何完整地提取里面的有用信息是至关重要的;2、数据完整型:受限于各种物理环境和计算机信息化不足的因素,使得获取到的数据完整型不足、时效性差、断层性严重的问题;3、时间序列的特性:电力数据通常是时间序列数据,其具有季节性、趋势和周期性等特点。因此,如何利用电力相关数据对电力长期使用进行准确地预测,是目前需要解决的问题。


技术实现思路

1、为克服上述现有技术的不足,本专利技术提供了一种电力使用长期预测方法、系统、设备及介质,利用电力使用相关的多源数据,基于本文档来自技高网...

【技术保护点】

1.一种电力使用长期预测方法,其特征在于,包括:

2.如权利要求1所述的一种电力使用长期预测方法,其特征在于,所述多源数据的类型包括:GDP、产业结构、人口、用户类型、上期使用电量、区域和气象。

3.如权利要求1所述的一种电力使用长期预测方法,其特征在于,根据所获取的历史多源数据的类型,分别基于所对应的SARIMAX模型进行预测,得到电力预测使用量的多个浮点值,具体为:

4.如权利要求1所述的一种电力使用长期预测方法,其特征在于,还包括:根据皮尔逊相关系数和随机森林集成模型将电力使用量相关的多源数据类型进行筛选,并对筛选出的电力使用量相关的多源数据进行...

【技术特征摘要】

1.一种电力使用长期预测方法,其特征在于,包括:

2.如权利要求1所述的一种电力使用长期预测方法,其特征在于,所述多源数据的类型包括:gdp、产业结构、人口、用户类型、上期使用电量、区域和气象。

3.如权利要求1所述的一种电力使用长期预测方法,其特征在于,根据所获取的历史多源数据的类型,分别基于所对应的sarimax模型进行预测,得到电力预测使用量的多个浮点值,具体为:

4.如权利要求1所述的一种电力使用长期预测方法,其特征在于,还包括:根据皮尔逊相关系数和随机森林集成模型将电力使用量相关的多源数据类型进行筛选,并对筛选出的电力使用量相关的多源数据进行标准化处理。

5.如权利要求1所述的一种电力使用长期预测方法,其特征在于,将根据分类模型所确定电力预测使用量的有限空间范围作为所述sarimax模型的3θ正态化边界,对所述sarimax模型得到的浮点值进行优化。

<...

【专利技术属性】
技术研发人员:孙岗梁云丹黄怡赵鹏曲延盛严莉常英贤王高洲呼海林杨坤牛德玲刘新邵志敏樊静雨胡恒瑞管荑梁天王中龙朱尤祥肖沈阳张金国王雨晨刘保臣胡斌浩
申请(专利权)人:国网山东省电力公司信息通信公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1