一种基于半监督和时空特征的加密流量分类方法技术

技术编号:40771305 阅读:32 留言:0更新日期:2024-03-25 20:19
本发明专利技术公开了一种基于半监督和时空特征的加密流量分类方法,包括如下步骤:步骤1:对加密流量数据进行预处理,获取每个流量样本标签和特征作为样本集;步骤2:随机分类步骤1生成的样本集,生成无监督学习模块的无标签数据样本和监督学习模块的有标签数据样本;步骤3:将步骤2生成的无标签数据样本通过时空特征提取模块提取出时空特征;步骤4:重构步骤3提取样本的时空特征,进行训练后输出无监督训练模型;步骤5:将步骤2生成的有标签数据样本放入监督学习模块训练,输出分类模型。本发明专利技术半监督学习更好地利用了数据特征,提高了模型的分类精度。通过实验对比发现,相比单一使用深度学习的某种模型,达到了更好的分类精度。

【技术实现步骤摘要】

本专利技术涉及加密流量分类领域,尤其涉及一种基于半监督和时空特征的加密流量分类方法


技术介绍

1、为了保证数据传输过程中的安全和隐私,如今互联网上的大部分流量都进行了加密处理,加密流量分类已经成为流量审计工作的难点。基于统计特征的方法和深度包检测的准确率受到所提取特征的质量和数量限制,因此主流的加密流量分类方法慢慢转移到了深度学习,这可以解决加密流量分类中的特征难以提取的问题,在处理大规模数据集时具有良好的分类效果。深度学习首先捕获网络流量,处理好流量特征并标记好标签,然后将样本送到搭建好的神经网络中进行训练,最后输出分类模型。

2、从流量的数据集来说:处理好一个大型数据集的特征并打上标签是一件十分消耗时间和人力成本的工作,还有可能产生标注偏差,这使得传统模型缺少大量可供训练的标签样本。对于加密流量分类来说,只使用少量的标签样本进行训练,难以达到较好的精度。

3、从深度学习的模型来说:当前的深度学习的模型没有全面地利用流量的特征,大部分模型使用cnn或rnn等单一的模型结构,仅仅获取数据的时间或空间特征,获得一个大型的带分类标签的本文档来自技高网...

【技术保护点】

1.一种基于半监督和时空特征的加密流量分类方法,其特征在于,包括如下步骤:

2.根据权利要求1所述的基于半监督和时空特征的加密流量分类方法,其特征在于,所述步骤1包括如下:

3.根据权利要求2所述的基于半监督和时空特征的加密流量分类方法,其特征在于,所述步骤2包括如下:

4.根据权利要求3所述的基于半监督和时空特征的加密流量分类方法,其特征在于,所述步骤3包括如下:

5.根据权利要求4所述的基于半监督和时空特征的加密流量分类方法,其特征在于,所述步骤4包括如下:

6.根据权利要求5所述的基于半监督和时空特征的加密流量分类方法,其...

【技术特征摘要】

1.一种基于半监督和时空特征的加密流量分类方法,其特征在于,包括如下步骤:

2.根据权利要求1所述的基于半监督和时空特征的加密流量分类方法,其特征在于,所述步骤1包括如下:

3.根据权利要求2所述的基于半监督和时空特征的加密流量分类方法,其特征在于,所述步骤2包括如下:

4.根据权利要求3所述的基于半监督和时空特征的加密流量分类方...

【专利技术属性】
技术研发人员:王劲松易嘉俊魏宗朴
申请(专利权)人:天津理工大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1