自监督深度学习与模型方法相结合的云层去除方法及装置制造方法及图纸

技术编号:40072145 阅读:17 留言:0更新日期:2024-01-17 00:20
本申请公开了一种自监督深度学习与模型方法相结合的云层去除方法及装置,该方法包括:获取待处理的多时相遥感图像,将待处理的多时相遥感图像输入至预设低秩正则化自监督网络模型中进行处理,生成与待处理的多时相遥感图像对应的目标多时相遥感图像。本方案通过预设低秩结构稀疏分解框架模型有效地探索了无云图像分量和云层分量的内在物理特性,提高了后续进行云层去除的准确性;另外,通过将基于自监督深度学习的预设引导式深度解码器网络模型捕捉到的深度先验集集成到预设低秩结构稀疏分解框架模型中,由于预设引导式深度解码器网络模型不需要外部训练数据,并采用自监督方法来优化网络参数,提高了进行云层去除的灵活性。

【技术实现步骤摘要】

本申请涉及图像处理,尤其涉及自监督深度学习与模型方法相结合的云层去除方法及装置


技术介绍

1、随着遥感技术和硬件设备的发展,如今我们可以获得具有更高空间、光谱和时间分辨率的光学遥感图像(remote sensing image,简称rsi)。由于其丰富的空间、光谱和时间信息,rsi已被广泛应用于地球观测应用,如土地覆盖分类、目标检测和环境监测等。然而,受到成像设备和外部环境的影响,收集到的rsi不可避免地受到厚云的影响,这严重影响了下游应用,这使得获取高质量的rsi变得具有挑战性。因此,云去除成为光学遥感成像领域的紧迫问题。

2、传统地,在进行云层去除时,通常是采用传统的深度学习方法来学习云层的多尺度特征,并且,只有在具有足够合适的训练数据的情况下,才能够有效地去除云层。因此,现有的云层去除方法存在灵活性较差的问题。


技术实现思路

1、本申请旨在至少解决现有技术中存在的技术问题,为此,本申请第一方面提出一种自监督深度学习与模型方法相结合的云层去除方法,该方法包括:

>2、获取待处理的多本文档来自技高网...

【技术保护点】

1.一种自监督深度学习与模型方法相结合的云层去除方法,其特征在于,所述方法包括:

2.根据权利要求1所述的方法,其特征在于,所述将所述待处理的多时相遥感图像输入至预设低秩正则化自监督网络模型中进行处理,生成与所述待处理的多时相遥感图像对应的目标多时相遥感图像,包括:

3.根据权利要求2所述的方法,其特征在于,所述通过半二次分裂算法对所述解耦模型进行优化处理,生成所述目标多时相遥感图像,包括:

4.根据权利要求1-3任一项所述的方法,其特征在于,所述预设低秩正则化自监督网络模型的构建过程,包括:

5.根据权利要求4所述的方法,其特征在于,所述...

【技术特征摘要】

1.一种自监督深度学习与模型方法相结合的云层去除方法,其特征在于,所述方法包括:

2.根据权利要求1所述的方法,其特征在于,所述将所述待处理的多时相遥感图像输入至预设低秩正则化自监督网络模型中进行处理,生成与所述待处理的多时相遥感图像对应的目标多时相遥感图像,包括:

3.根据权利要求2所述的方法,其特征在于,所述通过半二次分裂算法对所述解耦模型进行优化处理,生成所述目标多时相遥感图像,包括:

4.根据权利要求1-3任一项所述的方法,其特征在于,所述预设低秩正则化自监督网络模型的构建过程,包括:

5.根据权利要求4所述的方法,其特征在于,所述方法还包括:

6.根据权利要求5所述的方法,其特征在于,所述第一正则化器为,其中,表示第一正则化器,表示核范数,表示所述无云图像分量, 表示整形算子,表示的第 i 个奇异值;所述第二正则化器为,其中,表示第二正则化器,表示云层分量,表示2,1范数,m表示空间分辨率的长度,n表示空间分辨率的宽度,t表示时间节点数,表示2范数。...

【专利技术属性】
技术研发人员:陈勇陈茂林张娟徐叶琦易玉根曾锦山
申请(专利权)人:江西师范大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1