【技术实现步骤摘要】
【国外来华专利技术】
本公开的各种实施方案总体上涉及图像处理方法。更具体地,本公开的特定实施方案涉及用于处理电子图像以对载玻片内标本组织类型进行归类(例如,分类)的系统和方法。
技术介绍
1、当处理载玻片安装的组织病理学标本的数字化图像(例如,数字全载玻片图像)时,通常假设载玻片中仅存在由数据库(诸如实验室信息系统)指示的单一组织标本类型。然而,在一些情况下,实验室信息系统中记录的组织标本类型可能是错误的和/或载玻片中可能存在未记录在实验室信息系统中的一种或多种附加组织标本类型。这不仅会导致记录不准确,而且还可能导致特定于给定组织标本类型的基于人工智能(ai)的图像处理系统错误地应用到数字全载玻片图像的一个或多个区域,这些区域包括不同的组织标本类型。
2、本文提供的背景描述是为了一般性地呈现本公开的背景的目的。除非本文另有说明,否则本节中描述的材料不是本申请中的权利要求的现有技术,并且不通过包含在本节中而承认其是现有技术或现有技术的建议。
技术实现思路
1、根据本公开的某些方面,公开了用于处理电子图
...【技术保护点】
1.一种用于识别数字全载玻片图像中存在的组织标本类型的系统,所述系统包括:
2.根据权利要求1所述的系统,其中所述机器学习系统是无监督机器学习系统,其通过以下方式学习所述记录的组织标本类型的所述分布:
3.根据权利要求2所述的系统,其中所述无监督机器学习系统使用混合模型、多元高斯过程或核密度估计中的一者或多者来拟合所述分布。
4.根据权利要求1所述的系统,其中对所述一个或多个前景图块进行分类还包括:
5.根据权利要求4所述的系统,其中响应于来自所述一个或多个特征向量中的特征向量的所述概率满足或超过所述预定义阈值,所述操作
...
【技术特征摘要】
【国外来华专利技术】
1.一种用于识别数字全载玻片图像中存在的组织标本类型的系统,所述系统包括:
2.根据权利要求1所述的系统,其中所述机器学习系统是无监督机器学习系统,其通过以下方式学习所述记录的组织标本类型的所述分布:
3.根据权利要求2所述的系统,其中所述无监督机器学习系统使用混合模型、多元高斯过程或核密度估计中的一者或多者来拟合所述分布。
4.根据权利要求1所述的系统,其中对所述一个或多个前景图块进行分类还包括:
5.根据权利要求4所述的系统,其中响应于来自所述一个或多个特征向量中的特征向量的所述概率满足或超过所述预定义阈值,所述操作还包括:
6.根据权利要求5所述的系统,其中将所述相应前景图块分类为分布内前景图块指示包括在所述相应前景图块中的所述组织标本属于所述记录的组织标本类型。
7.根据权利要求4所述的系统,其中响应于来自所述一个或多个特征向量中的特征向量的所述概率低于所述预定义阈值,所述操作还包括:
8.根据权利要求7所述的系统,其中将所述相应前景图块分类为分布外前景图块指示包括在所述相应前景图块中的所述组织标本属于与所...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。