一种基于卷积神经网络的高温部件蠕变断裂寿命预测方法技术

技术编号:39837708 阅读:20 留言:0更新日期:2023-12-29 16:23
本发明专利技术涉及一种基于卷积神经网络的高温部件蠕变断裂寿命预测方法,包括:步骤

【技术实现步骤摘要】
一种基于卷积神经网络的高温部件蠕变断裂寿命预测方法


[0001]本专利技术涉及高温部件蠕变断裂寿命预测领域,更具体地涉及一种基于卷积神经网络的高温部件蠕变断裂寿命预测方法


技术介绍

[0002]蠕变是先进核电

火电

航空发动机等领域高温结构的重要损伤模式

研究表明,高温结构不连续位置应力场较为复杂,是结构失效的主要潜在位置

因此,局部不连续区域的蠕变断裂寿命预测是需要重点关注的内容

[0003]现有
ASME、RCC

MRx
等高温设计规范中,均提供了面向高温部件的蠕变断裂寿命预测方法

这些方法多为基于单个危险节点的评价方法,不能考虑危险区域的共同贡献,所得蠕变断裂寿命预测结果过于保守


技术实现思路

[0004]由于算法的改进优化以及计算机硬件性能的提升,大数据方法逐渐运用于高温部件蠕变断裂寿命预测

以深度学习方法为例,其具有能解耦本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.
一种基于卷积神经网络的高温部件蠕变断裂寿命预测方法,其特征在于,包括:步骤
S1
,确定待测件的试验参数,并根据所述待测件的试验参数和实际断裂寿命,获取待测件的蠕变断裂寿命历史实验数据;步骤
S2
,根据所述待测件的蠕变断裂寿命历史实验数据,基于有限元软件,获取待测件的相关应力分布云图;步骤
S3
,对所述相关应力分布云图进行后处理,并将所述待测件的蠕变寿命和后处理后的相关应力分布云图分成测试数据集和训练数据集;步骤
S4
,将所述训练数据集输入至带有注意力机制的卷积神经网络模型进行训练调参,获取高温部件蠕变断裂寿命预测模型;步骤
S5
,将所述测试数据集输入至所述高温部件蠕变断裂寿命预测模型,获取待测件的预测寿命,并将预测寿命与真实寿命进行对比,若预测寿命的误差在预设范围内,则结束流程;否则,更新训练数据集,返回步骤
S4。2.
根据权利要求1所述的基于卷积神经网络的高温部件蠕变断裂寿命预测方法,其特征在于,所述步骤
S1
包括:步骤
S11
,根据所述待测件的试验参数和实际断裂寿命,获取损伤力学蠕变本构方程参数,得到损伤力学蠕变本构方程;步骤
S12
,将所述损伤力学蠕变本构方程耦合至有限元软件中,得到待测件的蠕变断裂历史寿命实验数据
。3.
根据权利要求1所述的基于卷积神经网络的高温部件蠕变断裂寿命预测方法,其特征在于,所述步骤
S2
包括:步骤
S21
,将诺顿贝利本构方程耦合至有限元软件中;步骤
S22
,对所述待测件的蠕变断裂寿命历史实验数据进行整合,将整合后的数据导入耦合了诺顿贝利本构方程的有限元中进行计算,获取应力分布结果;步骤
S23
,将
Mises
应力和应力三轴度确定为待提取的特征,根据应力分布结果,获取
Mises
应力云图和应力三轴度云...

【专利技术属性】
技术研发人员:宫建国郑舟李玲王煦嘉王弘昶张翟轩福贞
申请(专利权)人:上海核工程研究设计院股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1