一种基于RFB-YOLOv5的循环肿瘤细胞检测方法技术

技术编号:39416996 阅读:22 留言:0更新日期:2023-11-19 16:07
本发明专利技术涉及智能检测技术领域,更具体的说是涉及一种基于RFB

【技术实现步骤摘要】
一种基于RFB

YOLOv5的循环肿瘤细胞检测方法


[0001]本专利技术涉及智能检测
,更具体的说是涉及一种基于RFB

YOLOv5的循环肿瘤细胞检测方法。

技术介绍

[0002]随着社会不断发展以及人们物质生活水平的提高,人们对于健康的需求越来越高。癌症作为严重影响人类健康的疾病,如果能够在病人患病早期及时发现并针对具体病情开展治疗,将在很大程度上拯救病人;因此,如何能够越早发现并且准确分析病人肿瘤情况成为了目前的研究热点。循环肿瘤细胞是一种游离在外周血中的肿瘤细胞,它从原发肿瘤中脱落后进入外周血,并携带着肿瘤相关信息,通过捕获该细胞进行数量和物质上的分析,从而可以了解患者的肿瘤病情;对于循环肿瘤细胞的图像检测,早期的人工检测方法和传统的图像处理算法效率低下。
[0003]现有的技术CN109308695A中,公开了一种基于改进U

net卷积神经网络模型的癌细胞检测方法,使用基本的图像处理方法对医学图像进行处理,将处理得到的二值化医学图像作为癌细胞的标注,并与原医学图本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种基于RFB

YOLOv5的循环肿瘤细胞检测方法,其特征在于,包括以下步骤:S1、获取真实的循环肿瘤细胞图像:通过采样针获取真实的循环肿瘤细胞图像;S2、分解真实的循环肿瘤细胞图像:对所述真实的循环肿瘤细胞图像进行分解,得到待测细胞和图像背景;S3、筛选细胞图像并进行扩充:从所述待测细胞中分别筛选图像清晰的200个循环肿瘤细胞图像和200个非循环肿瘤细胞图像,然后将所述循环肿瘤细胞图像和非循环肿瘤细胞图像进行扩充;S4、生成循环肿瘤细胞图像:首先生成背景图,然后按照循环肿瘤细胞数和非循环肿瘤细胞数占比分别从所述循环肿瘤图像和非循环肿瘤图像中抽取若干图像,将抽取的图像贴在选取的位置后,记录图像坐标,生成循环肿瘤细胞图像;S5、构建循环肿瘤细胞数据集:按照所述S4中的方法生成4000张循环肿瘤细胞图像,并返回YOLO数据格式的坐标文本,与原有的真实的循环肿瘤细胞图像共同构成循环肿瘤细胞数据集;S6、构建并改进YOLOv5网络结构:对原始的YOLOv5网络进行改进,使用RFB感受野模块替代原始网络的SPP模块,得到改进后的RFB

YOLOv5网格架构;S7、训练RFB

YOLOv5模型:将扩充后的循环肿瘤细胞数据集划分成训练集和验证集,送入改进后的RFB

YOLOv5网络中进行训练,训练完成后将效果最好的模型保存下来;S8、进行检测效果对比测试:选择166张真实的临床循环肿瘤细胞图像数据作为测试集,观察通过原始YOLOv5模型和RFB

YOLOv5模型得到的检测结果图像,进行对比;S9、进行计算效率对比测试:选取166张真实的临床循环肿瘤细胞图像,分别使用RFB

YOLOv5模型与原始YOLOv5模型进行检测,并对两模型的参数量和运行时间进行对比。2.根据权利要求1所述的基于RFB

YOLOv5的循环肿瘤细胞检测方法,其特征在于,所述步骤S1中,所述循环肿瘤细胞图像由一张纯黑的背景图和染色后的循环肿瘤细胞组成,所述循...

【专利技术属性】
技术研发人员:黄敏孙金龙王飞区志峰
申请(专利权)人:广东亿云付科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1