分子标志物识别方法技术

技术编号:39405738 阅读:19 留言:0更新日期:2023-11-19 15:57
本申请提供一种分子标志物识别方法

【技术实现步骤摘要】
分子标志物识别方法、装置、计算机设备及存储介质


[0001]本专利技术涉及医疗
,具体而言,涉及一种分子标志物识别方法

装置

计算机设备及存储介质


技术介绍

[0002]免疫治疗作为一种新的抗癌症恶化和复发的治疗方法,已成为最有希望和最优价值的癌症辅助治疗方法之一,最新研究表明,微卫星不稳定性
(Microsatellite Instability

MSI)
和肿瘤突变负荷
(Tumor Mutational Burden

TMB)
可以反应结直肠癌患者对免疫治疗的反应是否良好,但是
MSI

TMB
检测并不适用于所有患者

[0003]通常,实体瘤针对的金标准是采用苏木精和伊红染色
(H&E)
的全玻片图像
(Whole

slide image

WSI)
,全玻片图像可以反映本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.
一种分子标志物识别方法,其特征在于,所述方法包括:对目标生物组织样本的全玻片图像进行分块处理,得到多个图像块;采用预先训练的特征提取模型对所述多个图像块进行特征提取,得到多个图像块特征;采用预先训练的分子标志物识别模型对所述多个图像块特征进行分类,确定所述全玻片图像针对多种分子标志物类型的匹配概率;根据所述多种分子标志物类型的匹配概率,确定所述全玻片图像对应的目标分子标志物类型,所述分子标志物类型用于指示所述目标生物组织样本针对预设治疗方式的反应状态
。2.
如权利要求1所述的方法,其特征在于,所述采用预先训练的分子标志物识别模型对所述多个图像块特征进行分类,确定所述全玻片图像针对多种分子标志物类型的匹配概率,包括:采用所述分子标志物识别模型中的特征拼接层,对所述多个图像块特征进行拼接,得到所述全玻片图像的图像特征;采用所述分子标志物识别模型中的分类层对所述图像特征进行分类,得到所述多种分子标志物类型的匹配概率
。3.
如权利要求2所述的方法,其特征在于,所述对所述多个图像块特征进行拼接,得到所述全玻片图像的图像特征,包括:获取所述多个图像块特征的重要性权重;根据所述多个图像块特征的重要性权重,对所述多个图像块特征进行加权,得到所述全玻片图像的图像特征
。4.
如权利要求2所述的方法,其特征在于,所述方法还包括:采用所述特征拼接层,根据所述多种分子标志物类型的匹配概率

以及所述多个图像块特征,重新生成所述全玻片图像的图像特征;采用所述分类层对重新生成的所述图像特征进行分类,得到所述多种分子标志物类型的目标匹配概率
。5.
如权利要求4所述的方法,其特征在于,所述根据所述多种分子标志物类型的匹配概率

以及所述多个图像块特征,重新生成所述全玻片图像的图像特征,包括:根据所述多种分子标志物类型的匹配概率,计算所述多个图像块的重要性概率;根据所述多个图像块的重要性概率,...

【专利技术属性】
技术研发人员:汪文艳聂传齐杨家亮田埂王兵
申请(专利权)人:北京元码医学检验实验室有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1