一种多模态辅助的非优势模态中瘤周水肿的半监督分割方法技术

技术编号:39064769 阅读:57 留言:0更新日期:2023-10-12 19:57
本发明专利技术涉及医学图像处理技术领域,公开了一种多模态辅助的非优势模态中瘤周水肿的半监督分割方法,包括:构建瘤周水肿半监督分割数据集,并将两种模态的输入表示为I1和I2,当有标签时为I

【技术实现步骤摘要】
一种多模态辅助的非优势模态中瘤周水肿的半监督分割方法


[0001]本专利技术涉及医学图像处理
,特别涉及一种多模态辅助的非优势模态中瘤周水肿的半监督分割方法。

技术介绍

[0002]脑肿瘤是全世界最常见的癌症之一,胶质瘤是最普遍的恶性脑肿瘤,具有不同程度的侵袭性。在临床实践中,为了在诊断阶段对肿瘤的恶性程度进行分级,在放疗阶段勾画出脑瘤的靶区,根据瘤周水肿的范围确定正常脑组织的侵犯程度或评估术后恢复情况,需要在像素层面勾画出脑瘤的各个区域,如肿瘤核心和瘤周水肿等,以帮助诊断和治疗。
[0003]磁共振成像(MRI)在临床实践中被广泛使用,因为它有多种成像序列,为分析肿瘤结构和组织提供了丰富的互补性信息。具体来说,对于胶质瘤,常用的磁共振成像序列是T1加权(T1)、对比后T1加权(T1Gd)、T2加权(T2)和T2流体衰减反转恢复(T2

FLAIR)图像。然而,在临床中,病人无法完整采集各种模态的MRI序列,而部分病灶仅在特定序列较为明显。

技术实现思路

[0004]本专利技术提供了一种多模态辅助本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种多模态辅助的非优势模态中瘤周水肿的半监督分割方法,其特征在于,包括:S1、利用两种或多种非优势模态图像以及人工标注构建瘤周水肿半监督分割数据集,并将两种模态的输入表示为I1和I2,当它们有标签时表示为I
i,L
,没有标签时表示为I
i,U
;S2、采用两个编码器接收两个模态的图像I1和I2,通过卷积层进行初始特征挖掘后,通过多输出的模态融合模块进行多模态的可解释性特征融合;S3、重复步骤S2两次,编码器完成第三次上采样后,将双分支输出特征送入单输出模态融合模块,得到第一阶段处理后的输出特征;S4、将第一阶段处理后的输出特征采用两个相同的解码器解码之后,输出的特征图输入到一致性计算模块,计算出一致性损失L
con
,完成第二阶段的半监督学习。2.根据权利要求1所述的多模态辅助的非优势模态中瘤周水肿的半监督分割方法,其特征在于,对于数量有限的带有标签I
i,L
的输入,在计算完一致性损失后,还用金标准计算监督损失。3.根据权利要求1所述的多模态辅助的非优势模态中瘤周水肿的半监督分割方法,其特征在于,在所述第一阶段和第二阶段均采用新颖的CMA

Skip连接以弥补多模态和半监督之间的差距,首先将两个分支的特征串联在一起,然后使用卷积层增强表征,两个卷积核的大小为1
×1×
1以及3
×3×
3,最后,使用从0到1的注意力概率图处理原始特征F
i,ori
。4.根据权利要求3所述的多模态辅助的非优势模态中瘤周水肿的半监督分割方法,其特征在于,CMA

Skip连接的数学表达公式为:F
i,new
=CMA(F
i,1
,F
i,2
)+F
i,ori
其中,F
i,1
,F
i,2
分别表示不同非优势模态的特征图,CMA表示一系列的卷积、归一化和激活函数,F
i,ori
表示节点解码器输出的...

【专利技术属性】
技术研发人员:谢世朋李峥
申请(专利权)人:南京邮电大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1