一种基于人工智能的智慧教室分析识别方法及装置制造方法及图纸

技术编号:38864324 阅读:42 留言:0更新日期:2023-09-17 10:04
本申请涉及一种基于人工智能的智慧教室分析识别方法以及装置,涉及智慧教室技术领域,该方法包括以下步骤:获取目标教室内实时的课上监控图像;将经过预处理后的课上监控图像输入训练后的学生上课状态分析模型,获取所述课上监控图像中各个学生的行为分析结果;基于所述行为分析结果获取所述目标教室的学生行为分布图,并将各个教室的学生行为分布图发送至展示屏;采用本方法可以对教室中各学生在教学过程中的行为动作进行全面分析,便于用户实时获取学生的学习质量。实时获取学生的学习质量。实时获取学生的学习质量。

【技术实现步骤摘要】
一种基于人工智能的智慧教室分析识别方法及装置


[0001]本申请涉及智慧校园
,具体涉及一种基于人工智能的智慧教室分析识别方法及装置。

技术介绍

[0002]以云计算、大数据挖掘、物联网、人工智能等为标志的信息技术快速发展以及在教育领域的应用,使得传统教室也逐渐从普通教室转变为智慧型教室,从单一技术的教室应用转变为泛技术的教学环境,是社会发展对技术教育教学应用的必然要求。
[0003]然而,如何把现有技术更好的融入的实际应用中,仍然是摆在每个从业者面前的问题。现有的智慧教室更多的体现在硬件建设方便,比如多媒体教学、电子作业、人脸考勤等,现有的这些解决方案,更多的是针对某一项进行信息化更新,并没有进行系统化关联和升级。比如现有的方案中,有的只是进行了人数统计,有的做到了教室内剩余座位的统计并进行展示,然而,并没有有效利用该场景进行多功能分析和使用,也没有基于移动端的信息查询。
[0004]因此,如何对教室中各学生在教学过程中的行为动作进行全面分析,便于用户实时获取学生的学习质量。

技术实现思路
r/>[0005]本本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种基于人工智能的智慧教室分析识别方法,其特征在于,所述方法包括以下步骤:获取目标教室内实时的课上监控图像;将经过预处理后的课上监控图像输入训练后的学生上课状态分析模型,获取所述课上监控图像中各个学生的行为分析结果以及上课学生人数;基于所述行为分析结果以及上课学生人数,生成所述目标教室的学生上课状态。2.如权利要求1所述基于人工智能的智慧教室分析识别方法,其特征在于,所述方法还包括以下步骤:基于所述上课学生人数以及所述目标教室的总座位数,获取所述目标教室的上座率;当所述上座率低于预设阈值或者所述行为分析结果中显示存在异常行为,则向移动端发送告警信息;基于所述目标教室的历史上座率,获取所述目标教室的平均周上座率、平均月上座率以及平均年上座率;基于所述平均周上座率、平均月上座率以及平均年上座率,生成所述目标教室的上座率分布图,并将所述上座率分布图发送至移动端,以使所述移动端将所述上座率分布图显示在显示屏上。3.如权利要求1所述基于人工智能的智慧教室分析识别的方法,其特征在于,所述学生上课状态分析模型是由预设训练图像集对改进后的ResNet50网络模型训练而成。4.如权利要求3所述的基于人工智能的智慧教室分析识别方法,其特征在于,所述对原始ResNet50网络模型改进过程包括以下步骤:删除所述原始ResNet50网络模型中的第五层卷积网络层;减小原始ResNet50网络模型中第一卷积网络层的卷积核的大小,并分别对第二卷积网络层、第三卷积网络层以及第四卷积网络层的卷积核大小作适应性修改;在所述第四卷积网络层后拼接三个分支网络结构后,形成待训练的改进后的ResNet50网络模型。5.如权利要求4所述的基于人工智能的智慧教室分析识别方法,其特征在于,所述分支网络结构包含检测分支结构、关键点提取分支结构以及行为属性分支结构。6.如权利要求5所述的基于人工智能的智慧教室分析识...

【专利技术属性】
技术研发人员:肖楠邢军
申请(专利权)人:牡丹江师范学院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1