一种轴承剩余使用寿命预测方法、装置及存储介质制造方法及图纸

技术编号:38851211 阅读:31 留言:0更新日期:2023-09-17 09:59
本发明专利技术公开了一种轴承剩余使用寿命预测方法、装置及存储介质。该方法结合了故障知识驱动和数据驱动的优势,利用多参数Wiener过程生成多条退化数据,充分考虑了退化模式的多样性;利用数据驱动的双向长短时记忆网络处理退化数据,提高剩余使用寿命的预测结果。在双向长短时记忆网络的隐藏层,使用最大均值差异计算新故障和已知故障的深度空间特征差异,并作为正则项输入到双向长短时记忆网络中,进行深度时序特征的提取和不同故障特征空间的适配,有利于深度挖掘通用的时序退化特征,更有利于剩余寿命的预测。相比于单一的数据驱动方法,本发明专利技术融合故障知识的剩余寿命预测方法可提供退化过程中的时序知识,其预测结果具有鲁棒性和工程实用性。性和工程实用性。性和工程实用性。

【技术实现步骤摘要】
一种轴承剩余使用寿命预测方法、装置及存储介质


[0001]本专利技术涉及故障预测技术,具体涉及一种故障知识联合数据驱动的轴承剩余使用寿命预测方法、装置及存储介质。

技术介绍

[0002]专利文献CN 115828737 A提出了一种利用核函数把故障物理模型和数据驱动各自预测得到的电路板剩余寿命进行融合,得到融合后的剩余寿命,该方案主要包括两部分:故障物理模型方法:确定故障物理模型形式;利用维纳过程生成未来具有不确定性的退化数据;将故障物理模型获得的参数带入数据驱动模型进行寿命融合预测,并将预测的参数值转化为电路板剩余寿命值。
[0003]数据驱动方法:利用全部监测到的退化参数和监测应力输入到神经网络算法中进行训练,利用生成的未来退化参数进行预测。
[0004]上述方法主要存在如下的不足:1.上述通过核函数将物理模型和数据驱动方法得到的预测结果进行融合,属于决策层融合,在预测过程中为充分结合故障物理知识。
[0005]2.上述利用神经网络的方法需要用到大量的数据,虽然上述方法利用维纳过程生成了具有不确定性的退化数据,但是未本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种故障知识联合数据驱动的轴承剩余使用寿命预测方法,其特征在于,所述方法包括:将轴承新故障的测试数据输入到训练好的剩余寿命预测模型中,得到预测值;所述训练好的剩余寿命预测模型通过如下方式得到:获取轴承新故障数据,并设置多组Wiener过程的参数,以生成多条新故障退化数据;将所述多条新故障退化数据和已知故障退化数据输入到收缩自编码网络中,得到新故障的深度空间特征和已知故障的深度空间特征;将所述新故障的深度空间特征和已知故障的深度空间特征输入到双向长短时记忆网络中;在所述双向长短时记忆网络的隐藏层,使用最大均值差异计算新故障和已知故障的深度空间特征差异,并作为正则项输入到所述双向长短时记忆网络中,进行深度时序特征的提取和不同故障特征空间的适配,构建得到剩余寿命预测模型;利用优化器对所述构建得到的剩余寿命预测模型进行训练,得到训练好的剩余寿命预测模型。2.如权利要求1所述的故障知识联合数据驱动的轴承剩余使用寿命预测方法,其特征在于,所述方法还包括:对所得到的预测值采用平均绝对误差和均方根误差进行预测结果评估。3.如权利要求1所述的故障知识联合数据驱动的轴承剩余使用寿命预测方法,其特征在于,所述Wiener过程的参数包括漂移系数和扩散系数,通过系数的组合生成多条新故障退化数据;所述Wiener过程表达式为:其中,表示在时刻的退化值;表示反映退化率的漂移系数;是反映退化过程随机不确定性的扩散系数;是标准布朗运动;对公式(1)进行欧拉离散化得到离散时间模型:其中,表示在时刻的退化值;服从正态分布。4.如权利要求1所述的故障知识联合数据驱动的轴承剩余使用寿命预测方法,其特征在于,所述收缩自编码网络其目标是学习退化数据的流形表示,提取深度空间特征,具体表达形式为:其中,是原始退化数据,是编码函数,是激活函数,是权重矩阵,是偏置矩阵,表示隐藏层;是解码网络,是重构误差,是控制正则化强度的超参数;...

【专利技术属性】
技术研发人员:李巍华陈佳鲜黄如意陈祝云何国林
申请(专利权)人:人工智能与数字经济广东省实验室广州
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1