当前位置: 首页 > 专利查询>江苏大学专利>正文

一种基于改进yolov5算法的车牌识别系统技术方案

技术编号:38534877 阅读:34 留言:0更新日期:2023-08-19 17:06
本发明专利技术公开了一种基于改进yolov5算法的车牌识别系统,包括图像获取模块、图像处理模块、车牌检测模块及车牌识别模块,图像处理模块用于对采集的车牌图像进行预处理;车牌检测模块用于利用改进的yolov5模型对预处理后的车牌图像进行检测,还用于判断车牌图像中是否出现车牌遮挡现象;车牌识别模块用于利用车牌识别模型对预处理后的车牌图像中的车牌号进行识别,还用于利用相似度分析算法对遮挡的车牌图像中的车牌号进行识别。本发明专利技术不仅可以实现对车牌图像的滤波、反光增强及模糊复原处理,而且还可以实现对车牌区域及车牌遮挡现象的检测及识别,同时还可以实现对遮挡车牌和非遮挡车牌的识别,可以有效地提高了车牌的识别准确率。准确率。准确率。

【技术实现步骤摘要】
一种基于改进yolov5算法的车牌识别系统


[0001]本专利技术涉及安防监控
,具体来说,涉及一种基于改进yolov5算法的车牌识别系统。

技术介绍

[0002]随着现代社会经济的快速发展和人们生活水平的提高,汽车作为一种必需品已经走进千家万户。汽车数量的增长在给人们带来便利的同时,也引发了诸如交通堵塞等一系列交通问题。引入智能交通系统能够有效的缓解交通问题,其中对车牌的准确识别是必不可少的环节之一。车辆的车牌号码作为车辆的唯一“身份”标识,其具有重要的识别意义,车牌识别技术可以在车辆不作任何改动的情况下实现汽车“身份”的自动登记及验证,这项技术已经应用于公路收费、停车管理、称重系统、交通诱导、交通执法、公路稽查、车辆调度、车辆检测等各种场合中。
[0003]目前,传统的车牌识别技术VLPR(Vehicle License Plate Recognition)主要包括前端和后端,前端负责图像采集,需要部署到车辆经过的道路处,对准车辆入口方向并调试好角度和方向。后端负责图像处理与识别结果的处理,其中图像处理的目的在于识别出车牌,主本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种基于改进yolov5算法的车牌识别系统,其特征在于,该系统包括图像获取模块(1)、图像处理模块(2)、车牌检测模块(3)及车牌识别模块(4);其中,所述图像获取模块(1)用于利用预设的摄像装置采集车辆的车牌图像;所述图像处理模块(2)用于对采集的车牌图像进行预处理;所述车牌检测模块(3)用于利用改进的yolov5模型对预处理后的车牌图像进行检测,得到包含车牌的区域,还用于判断车牌图像中是否出现车牌遮挡现象;所述车牌识别模块(4)用于利用车牌识别模型对预处理后的车牌图像中的车牌号进行识别,还用于利用相似度分析算法对遮挡的车牌图像中的车牌号进行识别。2.根据权利要求1所述的一种基于改进yolov5算法的车牌识别系统,其特征在于,所述图像处理模块(2)包括图像滤波模块(21)、反光检测模块(22)、图像增强模块(23)、图像模糊检测模块(24)及图像模糊复原模块(25);其中,所述图像滤波模块(21)用于利用中值滤波算法对采集的车牌图像进行滤波处理;所述反光检测模块(22)用于判断滤波后的车牌图像是否存在反光现象,并在出现反光时进行图像增强处理;所述图像增强模块(23)用于利用对比度调节算法对存在反光现象的车牌图像进行增强处理;所述图像模糊检测模块(24)用于利用预设的图像评价指标实现对车牌图像的模糊检测,并在车牌图像存在模糊时进行复原处理;所述图像模糊复原模块(25)用于利用基于贝叶斯原理的非线性图像复原算法对模糊车牌图像进行复原。3.根据权利要求2所述的一种基于改进yolov5算法的车牌识别系统,其特征在于,所述图像模糊检测模块(24)包括边缘锐度值计算模块(241)、图像评价指标设定模块(242)及图像模糊判断模块(243);其中,所述边缘锐度值计算模块(241)用于利用差分乘积思想结合基于四领域改进的EAV算法计算边缘锐度值;所述差分乘积思想结合基于四领域改进的EAV算法的计算公式为:式中,EAV表示边缘锐度值,f(x,y)表示车牌图像中像素点的灰度值,(x,y)表示坐标点,m和n分别表示车牌图像的长和宽;所述图像评价指标设定模块(242)用于利用计算得到的边缘锐度值设定车牌图像的评价指标;所述图像模糊判断模块(243)用于利用车牌图像的评价指标实现对车牌图像是否模糊的判断。4.根据权利要求3所述的一种基于改进yolov5算法的车牌识别系统,其特征在于,所述
图像评价指标设定模块(242)在利用计算得到的边缘锐度值设定车牌图像的评价指标时包括:获取计算得到的边缘锐度值,并绘制边缘锐度值与模糊程度的关系曲线;通过分析关系曲线的变化来建立量化关系,并结合图像主观评价的分析制定出基于EAV的图像质量评价指标,对车牌图像质量的主观评价进行指标量化。5.根据权利要求2所述的一种基于改进yolov5算法的车牌识别系统,其特征在于,所述图像模糊复原模块(25)包括模糊尺寸估计模块(251)及图像复原模块(252);其中,所述模糊尺寸估计模块(251)用于利用基于改进的Radon变换和倒谱法实现对车牌图像模糊尺度的估计;所述图像复原模块(252)用于利用基于贝叶斯原理的非线性图像复原算法结合预设的迭代次数选取策略对模糊车牌图像进行复原。6.根据权利要求5所述的一种基于改进yolov5算法的车牌识别系统,...

【专利技术属性】
技术研发人员:蒋中天刘超刘雁玲杨晓峰沈钰杰
申请(专利权)人:江苏大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1