一种基于强化学习的自适应调节地图匹配搜索半径的方法技术

技术编号:38478464 阅读:30 留言:0更新日期:2023-08-15 16:57
本发明专利技术公开了一种基于强化学习的自适应调节地图匹配搜索半径的方法。运用强化学习中的Q学习算法完成自适应调节搜索半径,确定Q学习算法自适应调节搜索半径的智能体、环境、状态和动作变量,构建兼顾搜索候选路段集合大小和地图匹配准确性能的双目标奖励函数,制定基于策略的动作价值函数来确定最佳搜索半径策略。此外,利用启发式算法对GPS样本进行筛选以选择一定数量的训练数据,提高强化学习的训练效果。本发明专利技术能根据GPS的位置信息,自适应确定搜索半径,从而提高地图匹配的计算效率。从而提高地图匹配的计算效率。从而提高地图匹配的计算效率。

【技术实现步骤摘要】
一种基于强化学习的自适应调节地图匹配搜索半径的方法


[0001]本专利技术涉及计算机
和数据处理技术,具体涉及地图匹配中搜索候选路段技术,可应用于定位、导航、路线规划等基于位置的服务,尤其涉及一种基于强化学习的自适应调节地图匹配搜索半径的方法。

技术介绍

[0002]随着GPS传感器等定位技术和设备的日益普及和应用(如导航和路线规划等),大量的GPS轨迹数据被收集和应用于不同的领域。由于GPS传感器的读数存在一定的定位误差和采样误差,原始GPS轨迹需要在使用前进行预处理。地图匹配是最重要的预处理任务之一,其目的是通过GPS定位序列与底层道路网络的匹配,确定给定GPS轨迹的实际行驶路线。地图匹配算法的基本思想是根据车辆的GPS位置和其对应的路网数据信息确定该车辆实际行驶的道路,将一系列有序的车辆原始GPS采样点映射到道路网络中,通过地图匹配算法找出原始GPS采样点在道路网络中真实位置。地图匹配算法主要流程如下(见图1):
[0003](1)基于原始GPS采样点和给定的搜索半径确定采样点的候选路段;
[0004](2)候选路段本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种基于强化学习的自适应调节地图匹配搜索半径的方法,其特征在于,包括:基于预设大小的六边形网格对城市道路网络进行划分;将路网空间索引作为环境,地图匹配算法作为智能体,对每个六边形网格内给定的GPS样本,以不同搜索半径值作为状态,搜索半径扩大、不变和缩小作为动作,以包含正确路段且候选路段集合尽可能小为原则建立奖励函数,将每个六边形网格的自适应调节搜索半径问题建模为马尔科夫决策过程;利用Q学习算法获取所有六边形网格的最佳搜索半径。2.根据权利要求1所述的方法,其特征在于,所述以不同搜索半径值作为状态包括:设置最大搜索半径值后,以预设步长将搜索半径值进行离散,获得若干个基于搜索半径值表征的状态。3.根据权利要求1所述的方法,其特征在于,对搜索半径扩大、不变和缩小三个动作进行对应的赋值,利用数值表征相应的动作。4.根据权利要求1所述的方法,其特征在于,所述奖励函数定义如下:其中,为GPS样本g当前状态s
i
对应的候选路段集;G
g
为GPS样本g的正确候选路段,通过地图匹配获得;或0,表示是否包含路段G
g
。5.根据权利要求1所述的方法,其特征在于,利用Q学习算法获取所有六边形网格的最佳搜索半径的方式为:以每个六边形网格包含的GP...

【专利技术属性】
技术研发人员:刘志丹周荧倩伍楷舜
申请(专利权)人:香港科技大学广州
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1