定量描述MRI中脑胶质瘤特征边界变化评估指标的系统技术方案

技术编号:38467778 阅读:48 留言:0更新日期:2023-08-11 14:44
本发明专利技术公开了定量描述MRI中脑胶质瘤特征边界变化评估指标的系统,包括:图像预处理模块、MSC度量值计算模块、有效性评估模块和预测性评估模块。所述图像预处理模块将获取的脑胶质瘤数据进行去噪和去除孤立体素并填充处理;所述MSC度量值计算模块构建肿瘤的边界划分采样,设计计算脑胶质瘤的边界清晰度系数的模型;所述有效性评估模块利用Bland

【技术实现步骤摘要】
定量描述MRI中脑胶质瘤特征边界变化评估指标的系统


[0001]本专利技术属于计算机视觉
,具体涉及定量描述MRI中脑胶质瘤特征边界变化评估指标的系统。

技术介绍

[0002]脑胶质瘤是构成重大临床挑战的脑肿瘤,与脑膜瘤不同的是,恶性胶质瘤与周围组织没有明显的界面分隔,在脑胶质瘤的边界上部分区域的边界与正常的脑组织是模糊的,因此对于临床医生在诊断脑胶质瘤的边界问题上存在的标准和意见是不统一的。目前,在脑胶质瘤的检查和诊断方面医学成像仍然是金标准。医学成像为医生提供更加直观的诊断媒介,也为研究图像提供数据资源,但是MRI(Magnetic Resonance Imaging, 核磁共振成像) 和CT(Computed Tomography, 计算机断层扫描)肿瘤成像可以提供肿瘤位置的信息,但肿瘤的细微变化可能很难被注意到。并且脑胶质瘤根据恶性程度级别可分为高级别胶质瘤(HGG)和低级别胶质瘤(LGG),低级别胶质瘤生长缓慢,侵袭程度小,而高级别胶质瘤生长速度快,恶性程度高且侵袭的程度大。在肿瘤恶性程度高的浸润生长中往往胶质瘤与组织边界不能够本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.定量描述MRI中脑胶质瘤特征边界变化评估指标的系统,其特征在于,包括图像预处理模块、MSC度量值计算模块、有效性评估模块和预测性评估模块;所述图像预处理模块,用于对获取的数据集进行预处理,得到预处理后的MR图像和mask二值图像;所述MSC度量值计算模块,用于根据图像预处理模块中预处理后的图像,对脑胶质瘤边缘两侧进行等距离采样,提取图像采样强度特征,计算MSC度量值;所述有效性评估模块,用于采用Bland

Altman检验和卡方检验分析分别评价实际梯度和测量梯度之间的相关性,评估MSC的有效性;所述预测性评估模块,用于结合机器学习线性回归、Cochran

Armitage趋势卡方检验以及皮尔逊相关系数,评估MSC在脑胶质瘤侵袭边界距离的预测性。2.根据权利要求1所述的定量描述MRI中脑胶质瘤特征边界变化评估指标的系统,其特征在于,所述图像预处理模块,被配置以执行以下动作:步骤1、从数据集中获取脑胶质瘤图像数据集;步骤2、划分每个单独的脑胶质瘤ROI图像,并以NII图像文件格式存储;步骤3、利用高斯滤波对整个图像进行加权平均,对脑胶质瘤图像进行去噪处理;步骤4、利用MATLAB中Morphological函数,对于脑胶质瘤划分的mask二值图像,去除体素小于1000的区域部分,并对非脑胶质瘤划分的mask二值图像部分进行填充,获得边界信息。3.根据权利要求1所述的定量描述MRI中脑胶质瘤特征边界变化评估指标的系统,其特征在于,所述MSC度量值计算模块,被配置以执行以下动作:在跨越脑胶质瘤边界区域上,对脑胶质瘤边缘两侧进行等距离采样,提取脑胶质瘤图像体素采样强度值,使用非线性最小二乘估计器将采样强度值拟合成sigmoid曲线,具体公式为:;;;其中,M
x
表示强度平移,b表示幅值尺度,d表示函数沿x轴的平移量,MSC
i
表示增长速度,N表示强度差,S
i
表示sigmoid曲线,S
i+1
表示S
i
经过x=d轴对称后的曲线,M
2d

x
表示M
x
沿着x=d翻转后沿sigmoid曲线的强度平移,表示最终生成的边界变化强度曲线;根据采样强度值,利用sigmoid函数得到MSC度量值,将其可视化在脑胶质瘤边缘上,获得脑胶质瘤边界两侧变化的速率,即边界变化强度曲线。4.根据权利要求1所述的定量描述MRI中脑胶质瘤特征边...

【专利技术属性】
技术研发人员:陈苏婷胡斌武杨宁韩光勋薄业雯裴加明孙俊郑学东李玮
申请(专利权)人:南京中网卫星通信股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1