药物相互作用预测方法、计算机设备及介质技术

技术编号:38418803 阅读:28 留言:0更新日期:2023-08-07 11:20
本发明专利技术实施例公开一种药物相互作用预测方法、计算机设备及介质。在一具体实施方式中,该方法包括:利用已训练的图神经网络,对待预测药物的分子结构进行特征映射以得到待预测药物的表示向量,其中,待预测药物包括第一药物和第二药物;利用已训练的第一网络,根据待预测药物的表示向量预测得到表征待预测药物与设定疾病种类之间关系的关系向量;以及,利用已训练的第二网络,根据第一药物和第二药物的表示向量、第一药物及第二药物与设定疾病种类之间关系的关系向量预测得到第一药物与第二药物的药物相互作用。该实施方式可在保证精确性的基础上提升覆盖度,可实现对研发中的新药物与其他药物之间的药物相互作用预测。药物与其他药物之间的药物相互作用预测。药物与其他药物之间的药物相互作用预测。

【技术实现步骤摘要】
药物相互作用预测方法、计算机设备及介质


[0001]本专利技术涉及人工智能领域。更具体地,涉及一种药物相互作用预测方法、计算机设备及介质。

技术介绍

[0002]药物相互作用(Drug

Drug Interaction,DDI)是指同时或在一定时间内先后服用两种或两种以上药物时,一种药物的活性可能因其他药物的存在而发生改变。药物相互作用可能引发患者的许多不良反应,现已成为公共卫生的严重威胁之一。随着现代疾病谱的增加以及患者耐药性的升高,多药处方已成为常见的治疗选择,特别是对于伴有糖尿病、心血管疾病等多种慢性疾病的患者。这往往会增加临床相关风险,并对治疗管理提出了新的挑战。药物相互作用的发生通常是有害的,会使患者面临副作用和毒性的风险,甚至使患者的身体状况恶化。目前,药物相互作用的获取方式,通常是通过药物说明书获取,然而由于药物种类繁多,药物说明书不能覆盖所有起相互作用的药物。

技术实现思路

[0003]本专利技术的目的在于提供一种药物相互作用预测方法、计算机设备及介质,以解决现有技术存在的问题中的至少一个。<本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种药物相互作用预测方法,其特征在于,包括:利用已训练的图神经网络,对待预测药物的分子结构进行特征映射以得到待预测药物的表示向量,其中,所述待预测药物包括第一药物和第二药物;利用已训练的第一网络,根据所述待预测药物的表示向量预测得到表征所述待预测药物与设定疾病种类之间关系的关系向量;以及利用已训练的第二网络,根据第一药物的表示向量、第二药物的表示向量、第一药物与设定疾病种类之间关系的关系向量和第二药物与设定疾病种类之间关系的关系向量预测得到第一药物与第二药物的药物相互作用。2.根据权利要求1所述的方法,其特征在于,所述对待预测药物的分子结构进行特征映射以得到待预测药物的表示向量包括:将待预测药物的分子结构中的原子特征化为图结构的节点并将待预测药物的分子结构中的化学键特征化为图结构的边,得到待预测药物的图结构;对所述待预测药物的图结构进行迭代的图卷积运算以得到所述待预测药物的各节点的表示向量;以及根据所述待预测药物的各节点的表示向量获取所述待预测药物的表示向量。3.根据权利要求2所述的方法,其特征在于,所述对所述待预测药物的图结构进行迭代的的图卷积运算以得到所述待预测药物的各节点的表示向量包括:对所述待预测药物的图结构进行设定迭代次数的图卷积运算以得到所述待预测药物的各节点的表示向量。4.根据权利要求2所述的方法,其特征在于,所述图卷积运算的公式化描述为:h
t+1
(e
i
)=σ(W
e
×
h
t
(e
i
)+W
m
×
m
t
(e
i
))其中,h
t+1
(e
i
)为对待预测药物的图结构进行第t+1次图卷积运算后得到的第i个节点e
i
的表示向量,t为自然数;σ为非线性激活函数;W
e
为N1×
N1的第一参数矩阵;W
m
为N1×
N1的第二参数矩阵;对待预测药物的图结构进行第t+1次图卷积运算的第i个节点e
i
的第一中间变量第一中间变量初始值m0(e
i
)=0;N(e
i
)表示节点e
i
的邻居节点集合;type(k,i)表示待预测药物的第i个节点e
i
与第k个节点e
k
之间的边的类型;W
type(k,i)
为N1×
N1的第三参数矩阵;待预测药物的第i个节点e
i
的表示向量初始值h0(e
i
)=σ(W0×
onehot(e
i
);W0为N1×
N2的第四参数矩阵;onehot(e
i
)为待预测药物的第i个节点e
i
的独热表示的N2维列向量。5.根据权利要求2所述的方法,其特征在于,所述根据所述待预测药物的各节点的表示向量获取所述待预测药物的表示向量包括:将计算得到的所述待预测药物的各节点的表示向量的平均值、最大值或线性加权值作为所述待预测药物的表示向量。6.根据权利要求5所述的方法,其特征在于,将计算得到的所述待预测药物的各节点的表示向量的平均值作为所述待预测药物的表示向量的公式化描述为:其中,h为待预测药物的表示向量;待预测药物包含N个节点;h
T
(e
i
)为对待预测药物的图结构进行迭代的图卷积运算后得到的待预测药物的第i个节点e
i
的表示向量;
将计算得到的所述待预测药物的各节点的表示向量的最大值作为所述待预测药物的表示向量的公式化描述为:h=max(h
T
(e
i
)),i=1,...,N;将计算得到的所述待预测药物的各节点的表示向量的线性...

【专利技术属性】
技术研发人员:张振中
申请(专利权)人:京东方科技集团股份有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1